the first step, a new technique of skeletonization is
used to improve the feature extraction phase. In the
modelling step, a new classification method is pro-
posed resulting in an interesting accuracy rate com-
pared to separate classifiers and Deep Learning ar-
chitectures when tested on the IFHCDB dataset. A
data augmentation technique should be done in future
works to improve the result on AIA9K dataset due to
its small size.
REFERENCES
Alaei, A., Pal, U., and Nagabhushan, P. (2012). A com-
parative study of persian/arabic handwritten charac-
ter recognition. In 2012 International Conference
on Frontiers in Handwriting Recognition, pages 123–
128. IEEE.
Ali, A. A. A., Suresha, M., and Ahmed, H. A. M. (2020).
A survey on arabic handwritten character recognition.
SN Computer Science, 1(3):1–10.
Althobaiti, H. and Lu, C. (2017). A survey on arabic opti-
cal character recognition and an isolated handwritten
arabic character recognition algorithm using encoded
freeman chain code. In 2017 51st Annual Conference
on Information Sciences and Systems (CISS), pages 1–
6. IEEE.
Altwaijry, N. and Al-Turaiki, I. (2021). Arabic hand-
writing recognition system using convolutional neu-
ral network. Neural Computing and Applications,
33(7):2249–2261.
Ayodele, T. O. (2010). Types of machine learning algo-
rithms. New advances in machine learning, 3:19–48.
Balaha, H. M., Ali, H. A., Saraya, M., and Badawy, M.
(2021a). A new arabic handwritten character recogni-
tion deep learning system (ahcr-dls). Neural Comput-
ing and Applications, 33(11):6325–6367.
Balaha, H. M., Ali, H. A., Youssef, E. K., Elsayed, A. E.,
Samak, R. A., Abdelhaleem, M. S., Tolba, M. M.,
Shehata, M. R., Mahmoud, M. R., Abdelhameed,
M. M., et al. (2021b). Recognizing arabic handwritten
characters using deep learning and genetic algorithms.
Multimedia Tools and Applications, pages 1–37.
Borovikov, E. (2014). A survey of modern optical
character recognition techniques. arXiv preprint
arXiv:1412.4183.
Bosowski, P., Bosowska, J., and Nalepa, J. (2021). Evolving
deep ensembles for detecting covid-19 in chest x-rays.
In 2021 IEEE International Conference on Image Pro-
cessing (ICIP), pages 3772–3776. IEEE.
Boufenar, C., Batouche, M., and Schoenauer, M. (2018).
An artificial immune system for offline isolated hand-
written arabic character recognition. Evolving Sys-
tems, 9(1):25–41.
Boulid, Y., Souhar, A., and Elkettani, M. Y. (2017). Hand-
written character recognition based on the specificity
and the singularity of the arabic language. Interna-
tional Journal of Interactive Multimedia & Artificial
Intelligence, 4(4).
El-Sawy, A., Loey, M., and El-Bakry, H. (2017). Ara-
bic handwritten characters recognition using convolu-
tional neural network. WSEAS Transactions on Com-
puter Research, 5:11–19.
Heutte, L., Paquet, T., Moreau, J.-V., Lecourtier, Y., and
Olivier, C. (1998). A structural/statistical feature
based vector for handwritten character recognition.
Pattern recognition letters, 19(7):629–641.
Hu, M.-K. (1962). Visual pattern recognition by moment
invariants. IRE transactions on information theory,
8(2):179–187.
Kaoudja, Z., Kherfi, M. L., and Khaldi, B. (2019). An effi-
cient multiple-classifier system for arabic calligraphy
style recognition. In 2019 International Conference
on Networking and Advanced Systems (ICNAS), pages
1–5. IEEE.
KO, M. A. and Poruran, S. (2020). Ocr-nets: Variants of
pre-trained cnn for urdu handwritten character recog-
nition via transfer learning. Procedia Computer Sci-
ence, 171:2294–2301.
Levenshtein, V. I. et al. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710. Soviet
Union.
Lutf, M., You, X., and Li, H. (2010). Offline arabic
handwriting identification using language diacritics.
In 2010 20th International Conference on Pattern
Recognition, pages 1912–1915. IEEE.
Mallat, K. and Youssef, R. (2016). Adaptive morphologi-
cal closing based on inertia tensor for structuring ele-
ment estimation. In 2016 International Symposium on
Signal, Image, Video and Communications (ISIVC),
pages 253–258. IEEE.
Merad, D., Aziz, K.-E., and Thome, N. (2010). Fast people
counting using head detection from skeleton graph. In
2010 7th IEEE International Conference on Advanced
Video and Signal Based Surveillance, pages 233–240.
IEEE.
Mozaffari, S., Faez, K., Faradji, F., Ziaratban, M., and
Golzan, S. M. (2006). A comprehensive isolated
farsi/arabic character database for handwritten ocr re-
search. In Tenth International Workshop on Frontiers
in Handwriting Recognition. Suvisoft.
Rajabi, M., Nematbakhsh, N., and Monadjemi, S. A.
(2012). A new decision tree for recognition of per-
sian handwritten characters. International Journal of
Computer Applications, 44(6):52–58.
Rashad, M. and Semary, N. A. (2014). Isolated printed ara-
bic character recognition using knn and random forest
tree classifiers. In International Conference on Ad-
vanced Machine Learning Technologies and Applica-
tions, pages 11–17. Springer.
Sahlol, A., Abd Elfattah, M., Suen, C. Y., and Hassanien,
A. E. (2016). Particle swarm optimization with ran-
dom forests for handwritten arabic recognition sys-
tem. In International Conference on Advanced In-
telligent Systems and Informatics, pages 437–446.
Springer.
Sahlol, A. T., Suen, C. Y., Elbasyoni, M. R., and Sallam,
A. A. (2014). Investigating of preprocessing tech-
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods
58