Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A.
(2005). Comparing community structure identifica-
tion. Journal of statistical mechanics: Theory and ex-
periment, 2005(09):P09008.
Ding, J., Sun, Y.-z., Tan, P., and Ning, Y. (2018). Detecting
communities in networks using competitive hopfield
neural network. In 2018 International Joint Confer-
ence on Neural Networks (IJCNN), pages 1–7. IEEE.
Dong, L., Li, R., Zhang, J., and Di, Z. (2016). Population-
weighted efficiency in transportation networks. Scien-
tific reports, 6(1):1–10.
Fortunato, S. (2010). Community detection in graphs.
Physics reports, 486(3-5):75–174.
Girvan, M. and Newman, M. E. (2002). Community struc-
ture in social and biological networks. Proceedings of
the national academy of sciences, 99(12):7821–7826.
Goltsev, A. V., Dorogovtsev, S. N., Oliveira, J. G., and
Mendes, J. F. (2012). Localization and spreading of
diseases in complex networks. Physical review letters,
109(12):128702.
Grover, A. and Leskovec, J. (2016). node2vec: Scal-
able feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 855–
864.
Hamers, L. et al. (1989). Similarity measures in scientomet-
ric research: The jaccard index versus salton’s cosine
formula. Information Processing and Management,
25(3):315–18.
Hu, F., Liu, J., Li, L., and Liang, J. (2020). Community
detection in complex networks using node2vec with
spectral clustering. Physica A: Statistical Mechanics
and its Applications, 545:123633.
Hu, K., Hu, J.-B., Tang, L., Xiang, J., Ma, J.-L., Gao,
Y.-Y., Li, H.-J., and Zhang, Y. (2018). Predicting
disease-related genes by path structure and commu-
nity structure in protein–protein networks. Journal
of Statistical Mechanics: Theory and Experiment,
2018(10):100001.
Lancichinetti, A., Fortunato, S., and Radicchi, F. (2008).
Benchmark graphs for testing community detection
algorithms. Physical review E, 78(4):046110.
Li, H.-J., Wang, L., Zhang, Y., and Perc, M. (2020). Opti-
mization of identifiability for efficient community de-
tection. New Journal of Physics, 22(6):063035.
Li, H.-J., Zhang, J., Liu, Z.-P., Chen, L., and Zhang, X.-S.
(2012). Identifying overlapping communities in social
networks using multi-scale local information expan-
sion. The European Physical Journal B, 85(6):1–9.
Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P.,
Slooten, E., and Dawson, S. M. (2003). The bot-
tlenose dolphin community of doubtful sound features
a large proportion of long-lasting associations. Behav-
ioral Ecology and Sociobiology, 54(4):396–405.
Moradi, M. and Parsa, S. (2019). An evolutionary method
for community detection using a novel local search
strategy. Physica A: Statistical Mechanics and its Ap-
plications, 523:457–475.
Moradi, P., Ahmadian, S., and Akhlaghian, F. (2015). An
effective trust-based recommendation method using a
novel graph clustering algorithm. Physica A: Statisti-
cal mechanics and its applications, 436:462–481.
Newman, M. E. (2004). Fast algorithm for detecting com-
munity structure in networks. Physical review E,
69(6):066133.
Newman, M. E. and Girvan, M. (2004). Finding and eval-
uating community structure in networks. Physical re-
view E, 69(2):026113.
Pearson, K. (1905). The problem of the random walk. Na-
ture, 72(1867):342–342.
Pons, P. and Latapy, M. (2005). Computing communities
in large networks using random walks. In Interna-
tional symposium on computer and information sci-
ences, pages 284–293. Springer.
Raghavan, U. N., Albert, R., and Kumara, S. (2007).
Near linear time algorithm to detect community struc-
tures in large-scale networks. Physical review E,
76(3):036106.
Rand, W. M. (1971). Objective criteria for the evaluation of
clustering methods. Journal of the American Statisti-
cal association, 66(336):846–850.
Rosvall, M. and Bergstrom, C. T. (2008). Maps of random
walks on complex networks reveal community struc-
ture. Proceedings of the national academy of sciences,
105(4):1118–1123.
Wang, H., Hernandez, J. M., and Van Mieghem, P. (2008).
Betweenness centrality in a weighted network. Phys-
ical Review E, 77(4):046105.
Wang, Z., Wu, Y., Li, Q., Jin, F., and Xiong, W. (2016). Link
prediction based on hyperbolic mapping with commu-
nity structure for complex networks. Physica A: Sta-
tistical Mechanics and its Applications, 450:609–623.
Zachary, W. W. (1977). An information flow model for con-
flict and fission in small groups. Journal of anthropo-
logical research, 33(4):452–473.
Zheng, J., Wang, S., Li, D., and Zhang, B. (2019). Per-
sonalized recommendation based on hierarchical in-
terest overlapping community. Information Sciences,
479:55–75.
Zong-Wen, L., Jian-Ping, L., Fan, Y., and Petropulu, A.
(2014). Detecting community structure using label
propagation with consensus weight in complex net-
work. Chinese Physics B, 23(9):098902.
Community Detection based on Node Relationship Classification
601