
Evaluating Deep Learning-based NIDS in Adversarial Settings

Hesamodin Mohammadian, Arash Habibi Lashkari and Ali A. Ghorbani
Canadian Institute for Cybersecurity, University of New Brunswick, Fredericton, New Brunswick, Canada

Keywords: Network Intrusion Detection, Deep Learning, Adversarial Attack.

Abstract: The intrusion detection systems are a critical component of any cybersecurity infrastructure. With the increase
in speed and density of network traffic, the intrusion detection systems are incapable of efficiently detecting
these attacks. During recent years, deep neural networks have demonstrated their performance and efficiency
in several machine learning tasks, including intrusion detection. Nevertheless, recently, it has been found that
deep neural networks are vulnerable to adversarial examples in the image domain. In this paper, we evaluate
the adversarial example generation in malicious network activity classification. We use CIC-IDS2017 and
CIC-DDoS2019 datasets with 76 different network features and try to find the most suitable features for
generating adversarial examples in this domain. We group these features into different categories based on
their nature. The result of the experiments shows that since these features are dependent and related to each
other, it is impossible to make a general decision that can be supported for all different types of network
attacks. After the group of All features with 38.22% success in CIC-IDS2017 and 39.76% in CIC-DDoS2019
with ε value of 0.01, the combination of Forward, Backward and Flow-based feature groups with 23.28%
success in CIC-IDS2017 and 36.65% in CIC-DDoS2019 with ε value of 0.01 and the combination of Forward
and Backward feature groups have the highest potential for adversarial attacks.

1 INTRODUCTION

Machine Learning has been extensively used in au-
tomated tasks and decision-making problems. There
has been tremendous growth and dependence in us-
ing ML applications in national critical infrastructures
and critical areas such as medicine and healthcare,
computer security, autonomous driving vehicles, and
homeland security (Duddu, 2018). In recent years,
the use of Deep learning showed a lot of promising
result in machine learning tasks. But recent studies
show that machine learning specifically, deep learn-
ing models are highly vulnerable to adversarial exam-
ple either at training or at test time (Biggio and Roli,
2018).

The first works in this domain go back to 2004
when Dalvi et al. (Dalvi et al., 2004) studied this
problem in spam filtering. They said linear classi-
fier could be easily fooled by small careful changes
in the content of spam emails, without changing the
readability of the spam message drastically. In 2014,
Szegedy et al. (Szegedy et al., 2013) showed that deep
neural networks are highly vulnerable to adversarial
examples too.

In recent years deep learning showed its potential
in the security area such as malware detection and in-

trusion detection systems (NIDS). A NIDS purpose
is to distinguish between benign and malicious be-
haviors inside a network (Buczak and Guven, 2015).
Historically there are two methods for NIDSs: signa-
ture or rule-based approaches. Compared to the tradi-
tional intrusion detection systems, anomaly detection
methods based on deep learning techniques provide
more flexible and efficient approaches in networks
with high volume data, which makes it attractive for
researchers (Tsai et al., 2009; Gao et al., 2014; Ash-
faq et al., 2017).

In this paper, we evaluate the adversarial exam-
ple generation in malicious network activity classi-
fication. We use CIC-IDS2017 and CIC-DDoS2019
datasets with 76 various network features and try to
find the most suitable features for generating adver-
sarial examples in this domain. We group these fea-
tures into different categories based on their nature
and generate adversarial examples using features in
one or more categories. The result of our experiments
shows that since these features are dependent and re-
lated to each other, it is impossible to make a general
decision that can be supported for all different types
of network attacks. We achieved the best result when
we use entire features for adversarial example genera-
tion. However, in this research, we find some subsets

Mohammadian, H., Lashkari, A. and Ghorbani, A.
Evaluating Deep Learning-based NIDS in Adversarial Settings.
DOI: 10.5220/0010867900003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 435-444
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

435



of features that can achieve an acceptable result.
The rest of this paper is organized as follows: in

section two, we review the related works. Section
three discusses the background of the work. Sec-
tion four describes the proposed method. Section five
presents the experimental results followed by section
six with analysis and discussion. Section seven con-
cludes the paper.

2 BACKGROUND

The primary purpose of adversarial machine learn-
ing is to create inputs that can fool different machine
learning techniques and force them to make wrong
decisions. These crafted inputs are called adversar-
ial examples. These examples are carefully crafted by
adding small, often imperceptible perturbations to le-
gitimate inputs to fool deep learning models to make
wrong decisions. At the same time, a human ob-
server can correctly classify these examples (Good-
fellow et al., 2014b; Papernot et al., 2017).

As mentioned previously, Szegedy et al. (Szegedy
et al., 2013) were the first to demonstrated that there
are small perturbations that can be added to an image
and force a deep learning classifier into misclassifica-
tion. Let f be the DNN classifier and loss f be its
associated loss function. For an image x and the tar-
get label l, in order to find the minimal perturbation r
they proposed the following optimization problem:

min ‖r‖2 s.t. f (x+ r) = l; x+ r ∈ [0,1] (1)

By solving this problem, they found the perturba-
tion needed to add to the original image to create an
adversarial example.

To make it easier to craft an adversarial example,
Goodfellow et al. proposed a fast and simple method
for generating adversarial examples. They called their
method Fast Gradient Sign Method (FGSM) (Good-
fellow et al., 2014b). They used the sign direction of
the model gradient to calculate the perturbation they
wanted to add to the original example. They used the
following equation:

η = εsign(5xJ(θ,x, l)) (2)

Where η is the perturbation, ε is the magnitude of
the perturbation, and l is the target label. This pertur-
bation can be computed easily using backpropagation.

3 RELATED WORKS

Most of the early research on adversarial attacks fo-
cus on image domain problems such as image clas-
sification or face detection. Still, with the increasing
usage of DNN in security problems, the researchers
realize that adversarial examples may widely exist in
this domain. Grosse (Grosse et al., 2017) and Rieck
(Rieck et al., 2011) have studied adversarial examples
in malware detection. In (Warzyński and Kołaczek,
2018), the authors did a very simple experiment on the
NSL-KDD dataset. They showed that it is possible to
generate adversarial examples by using the FGSM at-
tack in intrusion detection systems. Rigaki shows that
adversarial examples generated by FGSM and JSMA
methods can significantly reduce the accuracy of deep
learning models applied in NIDS (Rigaki, 2017).

Wang did a thorough study on the NSL-KDD
dataset in adversarial setting (Wang, 2018). He used
adversarial attack methods including FGSM, JSMA,
Deepfool and C&W. He also analyzed the effect of
different features in the dataset in the adversarial ex-
ample generation process. Peng et al. (Peng et al.,
2019) evaluated the adversarial attack in intrusion
detection systems with different machine learning
model. They trained their four detection systems with
DNN, SVM, RF, and LR and studied the robustness
of these models in adversarial settings. Ibitoye stud-
ied the adversarial attacks against deep learning-based
intrusion detection in IoT networks (Ibitoye et al.,
2019). In (Hashemi et al., 2019), they showed how
to evaluate an anomaly-based NIDS trained on net-
work traffic in the face of adversarial inputs. They ex-
plained their attack method, which is based on catego-
rizing network features and evaluated three recently
proposed NIDSs.

All the previously mentioned works are in white-
box settings. This means that the adversary fully
knows the target model and has all the information,
including the architecture and hyper-parameters of the
model. In contrast, in black-box settings, an adver-
sary has no access to the trained model’s internal in-
formation and can only interact with the model as
a standard user who only knows the model output.
Yang et al. (Yang et al., 2018) made a black-box at-
tack on the NSL-KDD dataset. They trained a DNN
model on the dataset and used three different attacks
based on substitute model, ZOO (Chen et al., 2017),
and GAN (Goodfellow et al., 2014a). In (Kuppa et al.,
2019) they proposed a novel black-box attack which
generates adversarial examples using spherical local
subspaces. They evaluated their attack against seven
state-of-the-art anomaly detectors.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

436



4 PROPOSED METHOD

In this section, we explain our method for making an
adversarial attack against the NIDS. First, we train
a DNN model for classifying different types of net-
work attacks in our dataset with good performance
compared to other classifiers. Since we are mak-
ing a white-box attack, we assume that the attacker
knows the parameter and architecture of the target
DNN model. We use one of the well-known adversar-
ial attack methods in computer vision called FGSM
to craft our adversarial examples.

4.1 Training the DNN Target Model

First, we train our DNN model for classifying differ-
ent network attacks. We train a multi-layer perceptron
with two hidden layers, each of them has 256 neu-
rons. We used RelU as our activation function and
a Dropout layer with 0.2 probability in both hidden
layers.

In this research, we use CIC-DDoS2019
(Sharafaldin et al., 2019), and CIC-IDS2017
(Sharafaldin et al., 2018) datasets to train our
DNN model and perform the adversarial attack.
Each dataset contains several network attacks. The
CIC-DDoS2019 attacks are: DNS, LDAP, MSSQL,
NetBios, NTP, SNMP, SSDP, UDP, UDP-Lag,
WebDDos, SYN and TFTP. The CIC-IDS2017
includes DDoS, PortScan, Botnet, Infiltration, Web
Attack-Brute Force, Web Attack-SQL Injection,
Web Attack-XSS, FTP-Patator, SSH-Patator, DoS
GoldenEye, DoS Hulk, DoS Slowhttp, Dos Slowloris
and Heartbleed attack. They extracted more than
80 network traffic features from their datasets using
CICFlowMeter (Lashkari et al., 2017) and labeled
each flow as benign or attack name.

We used the data from training day of the CIC-
DDoS2019 and the whole CIC-IDS2017 to train our
DNN model and craft adversarial examples. During
preprocessing, we removed seven features, namely
Flow ID, Source IP, Source Port, Destination IP, Des-
tination Port, Protocol and Timestamp, which are not
suitable for a DNN model.

4.2 Generating Adversarial Examples

We are going to perform the adversarial attack in
a white-box setting and craft adversarial examples
using different feature sets while using the FGSM
(Goodfellow et al., 2014b) method for generating ad-
versarial examples.

We use 76 different features from CIC-
DDoS2019, and CIC-IDS2017 as our model input

and group these features into six sets and evaluate the
effectiveness of using each of these sets and a com-
bination of them to generate adversarial examples.
These six sets are Forward Packet, Backward Packet,
Flow-based, Time-based, Packet Header-based and
Packet Payload-based features. You can find the
details of these feature sets in Table 1.

In the FGSM method, after computing the magni-
tude of the perturbation using Equation 2, the attacker
will add the perturbation to all the input features to
generate the adversarial example. But, since we only
change a subset of input features to craft adversarial
examples, we use the following equation:

X ′ = X +mask vector ∗η (3)

Where X ′ is the adversarial example, X is the orig-
inal example, η is the magnitude of the perturbation
(ε) multiplied by the sign of the model gradient, and
mask vector is a binary vector with the same size as
input vector which for the features that we want to
change, has the value 1 and for the other features 0.

Algorithm 1: Crafting adversarial examples.
1 for each (x,y) ∈ Dataset do
2 if F(x) = y then
3 η = εsign(5xJ(θ,x))
4 x′← x+mask vector ∗η

5 if F(x′) 6= y then
6 return x′

7 end
8 end
9 end

Algorithm 1 shows how we generate adversarial
examples using a different set of features. For each
flow in the dataset, we use the FGSM method to com-
pute the magnitude of the perturbation. Then, we
multiply the mask vector of the set that we are using
and add the result to the original input. If the classi-
fier cannot make a correct prediction for the generated
sample, the algorithm will return it as a new adversar-
ial example.

5 EXPERIMENTS AND ANALYSIS

First, we train our DNN model for classifying net-
work attack in both datasets and demonstrate the per-
formance of the classifier. Then we use our white-
boxed adversary to perform an adversarial attack on
the trained classifier. Our purpose is to evaluate the
effect of different feature sets on the adversarial at-

Evaluating Deep Learning-based NIDS in Adversarial Settings

437



Table 1: Feature sets.
Name of the feature set List of features

Forward Packet (24)

total Fwd Packets, total Length of Fwd Packet, Fwd Packet Length Min, Fwd Packet Length Max
Fwd Packet Length Mean, Fwd Packet Length Std, Fwd IAT Min, Fwd IAT Max, Fwd IAT Mean
Fwd IAT Std, Fwd IAT Total, Fwd PSH flag, Fwd URG flag, Fwd Header Length, FWD Packets/s

Avg Fwd Segment Size, Fwd Avg Bytes/Bulk, Fwd AVG Packet/Bulk, Fwd AVG Bulk Rate
Subflow Fwd Packets, Subflow Fwd Bytes, Init Win bytes forward, Act data pkt forward

min seg size forward

Backward Packet (22)

total Bwd Packets, total Length of Bwd Packet, Bwd Packet Length Min, Bwd Packet Length Max
Bwd Packet Length Mean, Bwd Packet Length Std, Bwd IAT Min, Bwd IAT Max, Bwd IAT Mean
Bwd IAT Std, Bwd IAT Total, Bwd PSH flag, Bwd URG flag, Bwd Header Length, Bwd Packets/s

Avg Bwd Segment Size, Bwd Avg Bytes/Bulk, Bwd AVG Packet/Bulk, Bwd AVG Bulk Rate
Subflow Bwd Packets, Subflow Bwd Bytes, Init Win bytes backward

Flow-based (15)
Flow duration, Flow Byte/s, Flow Packets/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max

Flow IAT Min, Active Min, Active Mean, Active Max, Active Std, Idle Min, Idle Mean
Idle Max, Idle Std

Time-based (27)

Flow duration, Flow Byte/s, Flow IAT Mean, Flow IAT Std, Flow IAT Max, Flow IAT Min
Flow IAT Mean, Flow IAT Std, Flow IAT Max, Flow IAT Min, Bwd IAT Min, Bwd IAT Max
Bwd IAT Mean, Bwd IAT Std, Bwd IAT Total, FWD Packets/s, BWD Packets/s, Active Min

Active Mean, Active Max, Active Std, Idle Min, Idle Mean, Idle Max, Idle Std

Packet Header-based (14)
Fwd PSH flag, Bwd PSH flag, Fwd URG flag, Bwd URG flag, Fwd Header Length, Bwd Header Length
FIN Flag Count, SYN Flag Count, RST Flag Count, PSH Flag Count, ACK Flag Count, URG Flag Count

CWR Flag Count, ECE Flag Count

Packet Payload-based (16)

total Length of Fwd Packet, total Length of Bwd Packet, Fwd Packet Length Min, Fwd Packet Length Max
Fwd Packet Length Mean, Fwd Packet Length Std, Bwd Packet Length Min, Bwd Packet Length Max

Bwd Packet Length Mean, Bwd Packet Length Std, Min Packet Length, Max Packet Length
Packet Length Mean, Packet Length Std, Packet Length Variance, Average Packet Size

Table 2: Results of the Classifiers.
Machine Learning DDOS IDS

Techniques F1-score PC RC F1-score PC RC
DT 97.09 98.54 96.26 99.84 99.76 99.92

Naive Bayes 50.55 60.20 62.03 28.47 32.43 73.75
LR 69.53 70.68 68.94 36.71 39.76 34.96
RF 95.65 98.55 94.60 96.58 99.79 94.24

DNN (Our) 98.97 99.00 98.96 98.18 98.27 98.22

tack against NIDS and also find the most vulnerable
type of network attacks against adversarial attacks.

5.1 The DNN Classifier Performance

We train a DNN model on both datasets and compare
its performance with other machine learning tech-
niques. The DNN model is a simple multi-layer
perceptron. Table 2 shows the results that demon-
strate that our model’s performance is comparable
with other machine learning models.

5.2 The Adversarial Attack Results

After training the DNN model, we use the proposed
method to generate adversarial examples for the two
selected datasets. To perform the adversarial attack,
we use the FGSM method with two different values
for ε. In order to choose the suitable ε values for
our detailed experiments, first we perform the attack
using 6 different values including: 0.1, 0.01, 0.001,
0.0001, 0.00001, and 0.000001 for ε. Based on the
results, 0.001 and 0.01 were chosen as the preferred
values for ε. Also, we generate the adversarial exam-

ples using different feature sets and present the result
for each dataset.

5.2.1 CIC-IDS2017

After training the model on CIC-IDS2017, we start
generating adversarial examples. We only use those
original samples that the model detected correctly.
The number of these samples are 2,777,668. As the
model could not detect the Web Attack-SQL Injection,
we do not use them for adversarial sample generation.

Table 3 contains the result of adversarial sample
generation on CIC-IDS2017 dataset with 0.001 and
0.01 as values for ε. The table shows the number of
adversarial examples generated using different feature
sets. The first column is the result when we use all
features in the dataset.

With 0.001 the attack cannot generate any adver-
sarial examples for Infiltration, Web Attack-XSS and
Heartbleed, so we remove them from the results table.
As we expected, the best result in both cases is when
all the features were used. With ε = 0.001, the attack
is able to generate adversarial examples for 9.05% of
the original samples and with ε = 0.01 for 38.22% of
the actual samples.

In both cases the second-best set of features is the
combination of Forward, Backward and Flow-based
features with 8.89% for ε = 0.001 and 23.28% for
ε = 0.01. The third and fourth-best feature sets are
also the same for both ε values. The combination
of Forward and Backward features is third and the
combination of Forward and Flow-based features is

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

438



Table 3: CIC-IDS2017 results for ε = 0.01 and ε = 0.001.

Attack Type ε All FWD
(F)

BWD
(B)

Flow
(FL) F+B F+Fl B+FL F+B+FL Time

(T)

Packet
Header

(PH)

Packet
Payload

(PP)
PH+PP T+PH+PP Samples

Benign
0.01 585398 102109 31552 31903 143058 109848 12940 172927 29308 7097 63103 65740 76836

223927026.14 4.55 1.40 1.42 6.38 4.90 0.57 7.72 1.30 0.31 2.81 2.93 3.43

0.001 61354 56864 19117 23789 55926 58217 29973 57936 42826 1099 13967 14174 51669
2.73 2.53 0.85 1.06 2.49 2.59 1.33 2.58 1.91 0.04 0.62 0.63 2.3

DDoS
0.01 126278 103981 61040 46574 120764 112552 88763 123044 67991 789 89729 91053 117519

12735199.15 81.64 47.93 36.57 94.82 88.37 69.69 96.61 53.38 0.61 70.45 71.49 92.27

0.001 46408 12641 1960 2497 39023 21059 15629 45182 12173 61 4847 5115 38635
36.44 9.92 1.53 1.96 30.64 16.53 12.27 35.47 9.55 0.04 3.8 4.01 30.33

PortScan
0.01 151032 90279 135567 63349 151032 144544 141332 151032 130072 2439 72248 73116 147790

15148099.70 59.59 89.49 41.82 99.70 95.42 93.30 99.70 85.86 1.61 47.69 48.26 97.56

0.001 66222 15377 29964 566 66538 21105 32368 66606 2757 1 2823 3823 21468
43.71 10.15 19.78 0.37 43.92 1393 21.36 43.97 1.82 0 1.86 2.52 14.17

Botnet
0.01 699 696 686 690 699 699 698 699 699 1 685 686 699

699100 99.57 98.14 98.71 100 100 99.85 100 100 0.14 97.99 98.14 100

0.001 676 12 3 2 671 584 559 675 13 0 2 3 672
96.7 1.71 0.42 0.28 95.99 83.54 79.97 96.56 1.85 0 0.28 0.42 96.13

Infiltration 0.01 5 2 5 0 5 4 5 5 4 0 4 4 5 5100 40 100 0 100 80 100 100 80 0 80 80 100

Web Attack-Brute
Force

0.01 107 36 36 107 38 107 107 107 107 9 36 36 107

107100 33.64 33.64 100 35.51 100 100 100 100 8.41 33.64 33.64 100

0.001 35 9 0 0 35 35 5 35 0 0 0 0 9
32.71 8.41 0 0 32.71 32.71 4.67 32.71 0 0 0 0 8.41

Web Attack-XSS 0.01 16 0 10 3 15 3 14 16 3 0 2 7 16 16100 0 62.5 18.75 93.75 18.75 87.50 100 18.75 0 12.50 43.75 100

FTP-Patator
0.01 7771 7722 7732 3847 7771 7767 7771 7771 4211 14 7771 7771 7771

7771100 99.36 99.49 49.50 100 99.94 100 100 54.18 0.18 100 100 100

0.001 3810 3809 1396 3810 3810 3810 3810 3810 3810 4 3809 3809 3810
49.02 49.01 17.96 49.02 49.02 49.02 49.02 49.02 49.02 0.05 49.01 49.01 49.02

SSH-Patator
0.01 2936 2830 1939 2472 2936 2935 2936 2936 2935 0 67 219 2936

2936100 96.38 66.04 84.19 100 99.96 100 100 99.96 0 2.28 7.45 100

0.001 4 0 0 0 0 1 2 3 2 0 0 0 3
0.13 0 0 0 0 0.03 0.06 0.1 0.06 0 0 0 0.1

DoS GoldenEye
0.01 7281 4781 4948 598 6643 5129 5443 6676 2809 54 5365 5421 6336

995573.13 48.02 49.70 6.00 66.73 51.52 54.67 67.06 28.21 0.54 53.89 54.45 63.64

0.001 710 104 197 22 446 129 305 573 96 7 161 167 467
7.13 1.04 1.97 0.22 4.48 1.29 3.06 5.75 0.96 0.07 1.61 1.67 4.69

DoS Hulk
0.01 174567 165145 81397 58921 173204 167679 81257 173565 59457 2469 105626 105687 149214

22713176.85 72.70 35.83 25.94 76.25 73.82 35.77 76.41 26.17 1.08 46.50 46.53 65.69

0.001 71477 71185 18027 23375 71423 71226 27507 71645 27256 291 23730 23755 27311
31.46 31.34 7.93 10.29 31.44 31.35 12.11 31.54 12.00 0.12 10.44 10.45 12.02

DoS Slowhttp
0.01 1356 453 462 99 3712 463 483 3734 304 5 528 529 929

532825.45 8.50 8.67 1.85 69.66 8.68 9.06 70.08 5.70 0.09 9.90 9.92 17.43

0.001 69 49 46 7 56 50 47 56 41 1 53 53 59
1.29 0.91 0.86 0.13 1.05 0.93 0.88 1.05 0.76 0.01 0.99 0.99 1.10

Dos Slowloris
0.01 4303 4076 2397 2138 4276 4262 2478 4297 2381 10 3693 4211 4245

560976.71 72.66 42.73 38.11 76.23 75.98 44.17 76.60 42.44 0.17 65.84 75.07 75.68

0.001 688 522 147 9 659 530 170 682 181 0 253 267 499
12.26 9.3 2.62 0.16 11.74 9.44 3.03 12.15 3.22 0 4.51 4.76 8.89

Heartbleed 0.01 1 0 0 0 1 0 1 1 1 0 0 0 1 1010 0 0 0 10 0 10 10 10 0 0 0 10

Sum
0.01 1061750 482110 327771 210701 614154 555992 344228 646810 300282 12887 348857 354480 514404

277766838.22 17.35 11.80 7.58 22.11 20.01 12.39 23.28 10.81 0.46 12.55 12.76 18.51

0.001 251453 160572 70857 54077 238587 176746 110375 247023 89193 1464 50645 51166 144602
9.05 5.78 2.55 1.94 8.58 6.36 3.97 8.89 3.21 0.05 1.82 1.84 5.2

fourth one.
The worst results for both cases are when we use

Packet header-based features. The reason could be
that the number of features in this set is the lowest
and almost all the features in this set are based on the
packet flags which may not have much effect on de-
tecting the attack types.

If we only compare the results for the main fea-
ture sets, the best results for both ε values are when
the Forward features were used. This result supports
our previous findings that show the best feature sets
combination are the ones with the Forward features
present. There is a difference in the second-best fea-
tures set between two ε values. For value 0.001 the
second-best set is Time-based features but for value
0.01 is Packet Payload-based set. This result shows
that increasing the magnitude of the perturbation in-
creases the effect of Packet Payload-based features

more than Time-based features. The third best feature
set is Backward features.

In Table 3, we also show the number of generated
samples with two values of the ε for each network
attack type in the dataset.

Comparing the results for the Benign samples,
shows that, in all cases increasing the value of the
ε will increase the percentage of generated samples,
except for the combination of Backward, Flow-based
features and Time-based features.

For DDoS attack we are able to generate adver-
sarial examples for 99.15% of original samples when
we use All the features with ε = 0.01. Unlike Benign
samples, the results for all feature sets got better when
the ε value is increased.

The third comparison is for PortScan attack. The
highest percentage of generated examples is 99.7%
with ε = 0.01 for three different feature sets. This re-

Evaluating Deep Learning-based NIDS in Adversarial Settings

439



sult shows we can completely fool our model without
even using all the features during adversarial samples
generation.

These results for Botnet attack show even with
ε = 0.001 in four cases; we were able to generate ad-
versarial examples for more than 95% of the original
samples, which means Botnet attack is vulnerable to
adversarial attack.

Infiltration, Web Attack-XSS and Heartbleed rows
only contain values for ε = 0.01, because the at-
tack cannot generate any adversarial examples with
ε = 0.001.

In 7 cases, we were able to generate adversarial
examples for all the original examples with ε = 0.01
for Web Attack-Brute Force. Two interesting results
are for Flow-based and Time-based features. The
number of generated samples were 0 with ε = 0.001
for these two sets, but with ε = 0.01 the success rate
was 100%.

For FTP-Patator with ε = 0.001 the results for all
the feature sets are same (94%) except for Backward
and Packet Header-based features. Also, with ε =
0.01 the success was more than 99% for almost all
the feature sets.

When we perform the adversarial attack against
SSH-Patator samples with ε = 0.01 the success rate is
almost zero for all the feature sets. But after increas-
ing the value of the ε we had perfect results except
when packet related features were used.

The next four rows are for different types of DoS
attacks. It seems the best result with ε = 0.001 is for
DoS Hulk and with ε = 0.01 is for DoS GoldenEye.
With both ε DoS Slowhttp has the worst result, with
success less than 2% for all sets with ε = 0.001.

The last row is the comparison for all the gener-
ated samples using different feature sets. As we men-
tioned earlier, the best and worst feature sets for ad-
versarial sample generation in this dataset are All and
Packet Header-based features.

5.2.2 CIC-DDoS2019

The number of detected samples for CIC-DDoS2019
is 48197029, and we use them for performing our ad-
versarial attack. Since the model is not able to detect
any of the Web-DDoS attack samples, we do not use
them for adversarial sample generation. The results
of adversarial attack on CIC-DDoS 2019 dataset with
values 0.001 and 0.01 for ε are shown in Table 4. In
this tables, you can see the number of generated ad-
versarial examples and their respective percentage.

With both values for ε, we were able to generate
some adversarial examples for all the attacks and fea-
ture sets. Same as before the best result is when we

use all the features for performing the attack. The per-
centage of generated sample with ε = 0.001 is 1.14%
and with ε = 0.01 is 39.76%. Also, the worst result
is for Packet Header-based features for both ε values:
0.003% for ε = 0.001 and 0.01% for ε = 0.01. For
both ε values the top 5 feature sets are almost same,
except for 3rd and 4th place that are changed between
Forward plus Backward features and Forward plus
Flow-based features.

Again, like before we also compare the results for
the main feature sets. For both ε values, the best per-
formance is for Forward features. The second and
third place are visa-versa for two ε values. With
ε = 0.001 the second best is Time-based features with
0.04% and the third is Packet Payload-based features
with 0.02%. Packet Payload-based result is 4.62%
and Time-based result is 4.60% for ε = 0.01.

In Table 4, the first row shows the result for Be-
nign samples. Even with ε = 0.01 and using All the
features, the percentage of generated adversarial sam-
ples is less than 7%, which means making an adver-
sarial attack on Benign samples is a tough task.

The next row is for DNS attack. The percentage of
generated adversarial samples with ε = 0.001 for all
different sets are less 0.4%. But when the value of the
ε is increased, we hada better results with 32.58% for
All the features, 26.16% for combination of Forward,
Backward and Flow-based features, and 21.87% for
Forward and Flow-based features.

The success of the adversarial attack on LDAP
samples with ε = 0.001 is almost zero for all the dif-
ferent feature sets with 0.04% as the highest for All
features. The interesting finding here is that after in-
creasing the ε value to 0.01 we got better result with
Forward and Backward features combination than All
features.

The next four attacks are MSSQL, NET, NTP and
SNMP. The attack performance for all of them is re-
ally low with ε = 0.001. But with ε = 0.01 all of
them have results more than 64% and up to 86% when
using All the features and combination of Forward,
Backward and Flow-based features. The next two
best feature sets are Forward, Backward combination
and Forward, Flow-based combination, which means
using Forward features have a great effect on our at-
tack performance.

Amongst all the different attack types, the best
results with ε = 0.001 are for SSDP, and UDP. For
SSDP when we use All the features, Forward features
or a set that contains Forward features we are able to
generate adversarial examples for at least 9% percent
of original samples. This finding also apply to UDP,
but with less percentage of success.

Next is the result comparison for SYN attack sam-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

440



Table 4: CIC-DDoS2019 results for ε = 0.01 and ε = 0.001.

Attack Type ε All FWD
(F)

BWD
(B)

Flow
(FL) F+B F+Fl B+FL F+B+FL Time

(T)

Packet
Header

(PH)

Packet
Payload

(PP)
PH+PP T+PH+PP Samples

Benign
0.01 3564 836 357 259 1490 1213 679 1978 582 46 384 412 1045

550086.47 1.51 0.64 0.47 2.70 2.20 1.23 3.59 1.05 0.08 0.69 0.74 1.89

0.001 208 100 29 36 150 131 80 188 61 9 35 37 120
0.37 0.18 0.05 0.06 0.27 0.23 0.14 0.34 0.11 0.01 0.06 0.06 0.21

DNS
0.01 1598815 704487 41047 32002 989166 1073303 135588 1283905 66605 59 86070 110125 244175

490713232.58 14.35 0.83 0.65 20.15 21.87 2.76 26.16 1.35 0.001 1.75 2.24 4.97

0.001 17208 570 49 59 4615 10551 178 12015 146 14 106 112 4655
0.35 0.01 0.0009 0.001 0.09 0.21 0.003 0.24 0.002 0.0002 0.002 0.002 0.09

LDAP
0.01 1065335 1066028 24793 2315 1094897 1051191 548354 1053778 10311 161 3081 23993 556359

205171151.92 51.95 1.20 0.11 53.36 51.23 2.67 51.36 0.50 0.007 0.15 1.16 27.11

0.001 912 612 19 182 701 689 213 714 228 8 65 89 519
0.04 0.02 0.0009 0.008 0.03 0.03 0.01 0.03 0.01 0.0003 0.003 0.004 0.02

MSSQL
0.01 3788705 3000737 52849 297000 3469790 3513326 1751083 3726728 473755 527 45925 117196 2085899

436093286.87 68.80 1.21 6.81 79.56 80.56 40.15 85.45 10.86 0.01 1.05 2.68 47.83

0.001 6581 577 323 317 599 622 360 5243 346 151 327 344 613
0.15 0.01 0.007 0.007 0.01 0.01 0.008 0.12 0.007 0.003 0.007 0.007 0.01

NET
0.01 2961679 1063064 58919 1233 1888731 1854728 131697 2512890 60557 439 7504 27656 366333

391512675.64 27.15 1.50 0.03 48.24 47.37 3.36 64.18 1.54 0.01 0.19 0.70 9.35

0.001 1314 892 306 44 794 992 450 987 440 2 308 314 507
0.03 0.02 0.007 0.001 0.02 0.02 0.01 0.02 0.01 0.00005 0.007 0.008 0.01

NTP
0.01 870746 351687 201293 140910 781971 671155 496620 833804 500797 331 110267 120348 736063

119158373.07 29.51 16.89 11.82 65.62 56.32 41.67 69.97 42.02 0.02 9.25 10.09 61.77

0.001 12052 1590 279 374 1657 5770 778 8842 776 2 23 289 878
1.01 0.13 0.02 0.03 0.13 0.48 0.06 0.74 0.06 0.0001 0.001 0.02 0.07

SNMP
0.01 3979833 3172172 38138 3811 3513740 3380244 434229 3868078 4575 388 147012 148733 943566

514389577.37 61.66 0.74 0.07 68.30 65.71 8.44 75.19 0.08 0.007 2.85 2.89 18.34

0.001 1868 757 202 537 1085 1432 720 1806 866 69 338 382 1241
0.03 0.01 0.003 0.01 0.02 0.02 0.01 0.03 0.01 0.001 0.006 0.007 0.02

SSDP
0.01 1666660 684692 197760 113637 1252951 1029881 751695 1338533 461774 2504 637482 641470 1409026

252910465.89 27.07 7.81 4.49 49.54 40.72 29.72 52.92 18.25 0.09 25.20 25.36 55.71

0.001 246873 248284 517 2647 253946 245951 14209 245770 11981 287 7075 7960 16671
9.76 9.81 0.02 0.1 10.04 9.72 0.56 9.71 0.47 0.01 0.27 0.31 0.65

UDP
0.01 2677590 2168051 250950 337025 2324650 2061859 1323504 2548356 634744 1355 1124650 1427406 1893083

295857490.50 73.28 8.48 11.39 78.57 69.69 44.73 86.13 21.45 0.04 38.01 48.26 63.98

0.001 264463 24371 4139 3147 82019 191851 8193 260576 6404 1084 3079 4831 9908
8.93 0.82 0.13 0.1 2.77 6.48 0.27 8.80 0.21 0.03 0.10 0.16 0.33

SYN
0.01 113763 277 5055 366 110582 606 84612 113691 572 252 847 860 52126

13791298.24 0.02 0.36 0.02 8.01 0.04 6.13 8.24 0.04 0.01 0.06 0.06 3.77

0.001 428 135 239 162 328 271 297 334 268 12 104 122 298
0.03 0.009 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.0008 0.007 0.008 0.02

TFTP
0.01 328122 1124476 2313 5175 579659 584671 8411 284379 7007 369 59033 31529 71214

193755871.69 5.80 0.01 0.02 2.99 3.01 0.04 1.46 0.03 0.001 0.30 0.16 0.36

0.001 1382 492 253 179 633 748 355 733 306 76 260 279 574
0.007 0.002 0.001 0.0009 0.003 0.003 0.001 0.003 0.001 0.0003 0.001 0.001 0.002

UDP-Lag
0.01 112420 52988 34434 42 94423 57464 45798 102476 99 25 4510 10426 51591

32924834.14 16.09 10.45 0.01 28.67 17.45 13.90 31.12 0.03 0.007 1.36 3.16 15.66

0.001 34 22 1 8 29 24 16 31 9 0 2 6 26
0.01 0.006 0.0003 0.002 0.008 0.007 0.004 0.009 0.002 0 0 0.001 0.007

Sum
0.01 19167232 13389495 907908 933775 16102052 15279641 5712270 17668596 2221351 6456 2226765 2660157 8410480

4819702939.76 27.78 1.88 1.93 33.40 31.70 11.85 36.65 4.60 0.01 4.62 5.51 17.45

0.001 553323 278402 6356 7692 346556 459032 25849 537239 21831 1714 11722 14765 36010
1.14 0.57 0.01 0.01 0.71 0.95 0.05 1.11 0.04 0.003 0.02 0.03 0.07

ples. For ε= 0.001 all the results are almost zero. The
feature sets that have Backward features have the best
result with ε = 0.01, which means they are effective
for performing an adversarial attack on SYN samples.

The performance of the adversarial attack on
TFTP samples is really low even with ε = 0.01. The
unusual finding here is that the result when the at-
tack only uses Forward features is the best, even bet-
ter than using All the features. When we use For-
ward features with Backward or Flow-based features
the performance dropped almost to half. This means
changing Backward or Flow-based features is not
good for creating adversarial samples.

One to the last attack is for UDP-Lag. Again, the
result with ε = 0.001 is not good and close to zero
for all the feature sets. With ε = 0.01, the results get
better and get up to 34.14% when we perform an ad-
versarial attack with All the features. Also, as it is
evident in the sub-figure using feature sets containing
Forward features have the best results.

The last row shows the whole number of gener-
ated adversarial samples using each feature sets. As
expected, the best result with both values of ε is when
All the features were used. The next three best re-
sults were when we use feature sets containing For-
ward features. Also, the worst result is when we used
Packet Header-based features in both cases of ε val-
ues.

5.3 Perturbation Magnitude Analysis

In the previous section, we provided a comprehensive
description and analysis for all illustrated results. We
talked about each attack group’s results in the two
datasets one by one and compared the effect of dif-
ferent feature sets and ε values on the adversarial ex-
amples generation results.

Before we go forward with the detailed exper-
iments, we did some experiments with more val-
ues for ε. Table 5 and Table 6 contain the re-

Evaluating Deep Learning-based NIDS in Adversarial Settings

441



Table 5: CIC-IDS2017 results for different ε values.
Epsilon All F B FL F+B F+Fl B+FL F+B+FL T PH PP PH+PP T+PH+PP

0.1 1666564 1396501 482203 501943 1638785 1481315 571554 1641154 530359 194026 759937 924751 672617
59.99 50.27 17.35 18.07 58.99 53.32 20.57 59.08 19.09 6.98 27.35 33.29 24.21

0.015 1482685 650795 326461 217063 853691 710699 377653 919083 322101 19500 412036 467719 545263
53.37 23.42 11.75 7.81 30.73 25.58 13.59 33.08 11.59 0.70 14.83 16.83 19.63

0.01 1061750 482110 327771 210701 614154 555992 344228 646810 300282 12887 348857 354480 514404
38.22 17.35 11.80 7.58 22.11 20.01 12.39 23.28 10.81 0.46 12.55 12.76 18.51

0.0015 266418 196423 92176 62471 260403 218363 170243 255986 112350 2363 77408 80244 189854
9.59 7.07 3.31 2.24 9.37 7.86 6.12 9.21 4.04 0.08 2.78 2.88 6.83

0.001 251453 160572 70857 54077 238587 176746 110375 247023 89193 1464 50645 51166 144602
9.05 5.78 2.55 1.94 8.58 6.36 3.97 8.89 3.21 0.05 1.82 1.84 5.2

0.0001 37195 15055 5461 5674 21066 23628 10197 34413 15626 81 5332 5367 29851
1.33 0.54 0.19 0.20 0.75 0.85 0.36 1.23 0.56 0.002 0.19 0.19 1.07

0.00001 2878 1960 932 956 2217 2551 1694 2762 1484 3 1114 1117 2269
0.10 0.07 0.03 0.03 0.07 0.09 0.06 0.09 0.05 0.0001 0.04 0.04 0.08

0.000001 447 202 34 46 213 418 77 434 204 1 24 24 398
0.01 0.007 0.001 0.001 0.007 0.01 0.002 0.01 0.007 0.00003 0.0008 0.0008 0.01

Table 6: CIC-DDoS2019 results for different ε values.
Epsilon All F B FL F+B F+Fl B+FL F+B+FL T PH PP PH+PP T+PH+PP

0.1 28106617 28294444 20000389 13087263 29214995 28371739 22846392 27418180 19289663 7806957 27075487 25257239 25783112
58.31 58.70 41.49 27.15 60.61 58.86 47.40 56.88 40.02 16.19 56.17 52.40 53.49

0.015 22447454 16889691 2863840 1606726 18398603 18475018 9876491 20710804 4984834 13397 4406963 5499886 14502162
46.57 35.04 5.94 3.33 38.17 38.33 20.49 42.97 10.34 0.02 9.14 11.41 30.08

0.01 19167232 13389495 907908 933775 16102052 15279641 5712270 17668596 2221351 6456 2226765 2660157 8410480
39.76 27.78 1.88 1.93 33.40 31.70 11.85 36.65 4.60 0.01 4.62 5.51 17.45

0.0015 1429969 576454 13931 18927 723719 641808 31189 916182 27456 2261 19582 23048 57424
2.96 1.19 0.02 0.03 1.50 1.33 0.06 1.90 0.05 0.004 0.040 0.047 1.19

0.001 553323 278402 6356 7692 346556 459032 25849 537239 21831 1714 11722 14765 36010
1.14 0.57 0.01 0.01 0.71 0.95 0.05 1.11 0.04 0.003 0.02 0.03 0.07

0.0001 4280 1340 816 290 1829 1657 1317 2364 1221 152 712 809 2029
0.008 0.002 0.001 0.0006 0.0037 0.0034 0.002 0.004 0.002 0.0003 0.001 0.001 0.004

0.00001 205 173 135 136 194 194 149 202 147 0 144 147 163
0.00042 0.0003 0.0002 0.0002 0.00040 0.00040 0.0003 0.00041 0.0003 0 0.0002 0.0003 0.0003

0.000001 133 9 0 1 9 9 1 133 1 0 1 1 9
0.0002 0.00001 0 0.000002 0.00001 0.00001 0.000002 0.0002 0.000002 0 0.000002 0.000002 0.00001

sults of these experiments for CIC-IDS2017 and CIC-
DDoS2019 datasets. We started the experiments with
ε= 0.000001 and multiplied it by 10 each time for the
next ε value until 0.1.

By increasing the value of ε by a factor of 10 each
time, it is evident in both tables that the number of
generated examples increase for all the different fea-
ture groups. But there is no relation between how
much we increase the values of the ε and how much
more adversarial samples we can generate. Also, the
increase between different feature groups is not equal
for the same ε value. For example, after increasing the
value of ε from 0.01 to 0.1 for CIC-IDS2017 dataset,
the percentage of generated adversarial samples with
Forward features went up from 17.35% to 50.27%
which is almost multiplied by 2.9 but samples with
Backward features increased from 11.80% to 17.35%
which is an increase by a factor of 1.5.

After choosing the two final ε values, we did an-
other experiment. We add a small amount to these ε

values to evaluate the effect of these small changes.
This time we use 0.0015 and 0.015 as the ε values.
Results for these two values are also in Tables 5 and
6. As you can see in all cases, the number of gener-
ated adversarial examples increased, sometimes by a
factor of more than 2.

When we compare our findings for both datasets,
we are not able to make a general conclusion on
the most influential feature sets for an adversarial at-

tack. For example, we expect to have the best results
when using All the features, but for DoS Slowhttp in
CICIDS-2017 and TFTP in CIC-DDoS2019 we do
not get the best result with All the features.

The next key finding is that the rankings of feature
sets for two datasets are almost the same. The first six
best feature sets are the same for both datasets with
a slight difference in their ranking for different ε val-
ues. Also, the worst feature set for both datasets with
both ε values is Packet Header-based features. This
means it would be better to focus on these feature sets
for evaluating and enhancing adversarial attacks per-
formance in network intrusion detection and network
traffic classification domain.

In average, it seems that the CIC-DDoS2019
dataset is more robust to adversarial attacks than CIC-
IDS2017. With ε = 0.001, the average percentage of
generated adversarial samples are 0.36% and 4.55%,
which is low for CIC-DDoS2019. For ε = 0.01, they
both have averaged around 16%, but since we are
trying to make changes as small as possible during
our attack, these results show that CIC-DDoS2019 is
more robust.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

442



6 CONCLUSION AND FUTURE
WORKS

In this paper, we investigate the problem of adversar-
ial attack on deep learning models in the network do-
main. We chose two famous and well-known datasets:
CIC-DDoS2019 (Sharafaldin et al., 2019) and CIC-
IDS2017 (Sharafaldin et al., 2018) for our experi-
ments. Since CIC-DDoS2019 has more than 49 mil-
lions records and it is more than 16 times the records
in CIC-IDS2017, using these two datasets we can
verify the scalability of our method. We use CI-
CFlowMeter (Lashkari et al., 2017) to extract more
than 80 features from these datasets. From these
extracted features, 76 features are used to train our
deep learning model. We group these selected fea-
tures into six different categories based on their na-
ture: Forward, Backward, Flow-based, Time-based,
Packet Header-based and Packet Payload-based fea-
tures. We use each of these categories and a combi-
nation of them to generate adversarial examples for
our two datasets. Two different values are used as the
magnitude of adversarial attack perturbations: 0.001
and 0.01.

The reported results show that it is tough to make
a general decision for choosing the best groups of fea-
tures for all different types of network attacks. Also,
by comparing the results for two datasets, we found
out that the adversarial sample generation is harder
for CIC-DDoS2019 than CIC-IDS2017.

While the topic of adversarial attack on deep
learning model in network domain has been gaining
a lot of attention, there is still a big problem compar-
ing these kinds of attack in the image domain. The
main point in adversarial attack is to make sure that
the attacker did not change the nature of the original
sample completely. This is easily done in the image
domain by using a human observer. But in the net-
work domain, we cannot use a human expert, and it is
tough to make sure the changes we made to the fea-
tures of a flow did not change the nature of that flow.
For future works, the researcher should work on this
problem in the network domain.

REFERENCES

Ashfaq, R. A. R., Wang, X.-Z., Huang, J. Z., Abbas, H., and
He, Y.-L. (2017). Fuzziness based semi-supervised
learning approach for intrusion detection system. In-
formation Sciences, 378:484–497.

Biggio, B. and Roli, F. (2018). Wild patterns: Ten years
after the rise of adversarial machine learning. Pattern
Recognition, 84:317–331.

Buczak, A. L. and Guven, E. (2015). A survey of data min-
ing and machine learning methods for cyber security
intrusion detection. IEEE Communications surveys &
tutorials, 18(2):1153–1176.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J.
(2017). Zoo: Zeroth order optimization based black-
box attacks to deep neural networks without train-
ing substitute models. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security,
pages 15–26.

Dalvi, N., Domingos, P., Sanghai, S., and Verma, D. (2004).
Adversarial classification. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 99–108.

Duddu, V. (2018). A survey of adversarial machine learning
in cyber warfare. Defence Science Journal, 68(4).

Gao, N., Gao, L., Gao, Q., and Wang, H. (2014). An
intrusion detection model based on deep belief net-
works. In 2014 Second International Conference on
Advanced Cloud and Big Data, pages 247–252. IEEE.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014a). Generative adversarial nets. In
Advances in neural information processing systems,
pages 2672–2680.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014b). Ex-
plaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572.

Grosse, K., Papernot, N., Manoharan, P., Backes, M., and
McDaniel, P. (2017). Adversarial examples for mal-
ware detection. In European Symposium on Research
in Computer Security, pages 62–79. Springer.

Hashemi, M. J., Cusack, G., and Keller, E. (2019). Towards
evaluation of nidss in adversarial setting. In Proceed-
ings of the 3rd ACM CoNEXT Workshop on Big DAta,
Machine Learning and Artificial Intelligence for Data
Communication Networks, pages 14–21.

Ibitoye, O., Shafiq, O., and Matrawy, A. (2019). Analyzing
adversarial attacks against deep learning for intrusion
detection in iot networks. In 2019 IEEE Global Com-
munications Conference (GLOBECOM), pages 1–6.
IEEE.

Kuppa, A., Grzonkowski, S., Asghar, M. R., and Le-Khac,
N.-A. (2019). Black box attacks on deep anomaly de-
tectors. In Proceedings of the 14th International Con-
ference on Availability, Reliability and Security, pages
1–10.

Lashkari, A. H., Draper-Gil, G., Mamun, M. S. I., and Ghor-
bani, A. A. (2017). Characterization of tor traffic using
time based features. In ICISSp, pages 253–262.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. (2017). Practical black-box at-
tacks against machine learning. In Proceedings of the
2017 ACM on Asia conference on computer and com-
munications security, pages 506–519.

Peng, Y., Su, J., Shi, X., and Zhao, B. (2019). Evaluat-
ing deep learning based network intrusion detection
system in adversarial environment. In 2019 IEEE 9th
International Conference on Electronics Information

Evaluating Deep Learning-based NIDS in Adversarial Settings

443



and Emergency Communication (ICEIEC), pages 61–
66. IEEE.

Rieck, K., Trinius, P., Willems, C., and Holz, T. (2011). Au-
tomatic analysis of malware behavior using machine
learning. Journal of Computer Security, 19(4):639–
668.

Rigaki, M. (2017). Adversarial deep learning against intru-
sion detection classifiers.

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A.
(2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. ICISSp,
1:108–116.

Sharafaldin, I., Lashkari, A. H., Hakak, S., and Ghorbani,
A. A. (2019). Developing realistic distributed denial
of service (ddos) attack dataset and taxonomy. In 2019
International Carnahan Conference on Security Tech-
nology (ICCST), pages 1–8. IEEE.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. (2013). In-
triguing properties of neural networks. arXiv preprint
arXiv:1312.6199.

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009).
Intrusion detection by machine learning: A review. ex-
pert systems with applications, 36(10):11994–12000.

Wang, Z. (2018). Deep learning-based intrusion detection
with adversaries. IEEE Access, 6:38367–38384.

Warzyński, A. and Kołaczek, G. (2018). Intrusion detec-
tion systems vulnerability on adversarial examples. In
2018 Innovations in Intelligent Systems and Applica-
tions (INISTA), pages 1–4. IEEE.

Yang, K., Liu, J., Zhang, C., and Fang, Y. (2018). Ad-
versarial examples against the deep learning based
network intrusion detection systems. In MILCOM
2018-2018 IEEE Military Communications Confer-
ence (MILCOM), pages 559–564. IEEE.

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

444


