ACKNOWLEDGEMENTS
The authors would also like to thank the Coordenac¸
˜
ao
de Aperfeic¸oamento de Pessoal de N
´
ıvel Superior
- Brazil (CAPES) - Finance Code 001, Fundac
˜
ao
de Amparo
`
a Pesquisa do Estado de Minas Gerais
(FAPEMIG, grants APQ-01518-21), Conselho Na-
cional de Desenvolvimento Cient
´
ıfico e Tecnol
´
ogico
(CNPq) and Universidade Federal de Ouro Preto
(UFOP/PROPPI) for supporting the development of
the present study. We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the
Titan X Pascal GPU used for this research.
REFERENCES
Agarwal, R. and Jalal, A. S. (2021). Presentation attack
detection system for fake iris: a review. Multimedia
Tools and Applications, 80(10):15193–15214.
Baker, S. E., Hentz, A., Bowyer, K. W., and Flynn,
P. J. (2010). Degradation of Iris Recognition Per-
formance due to non-Cosmetic Prescription Contact
Lenses. Computer Vision and Image Understanding,
114(9):1030–1044.
Bjorck, N., Gomes, C. P., Selman, B., and Weinberger,
K. Q. (2018). Understanding batch normalization. In
Advances in Neural Information Processing Systems,
pages 7694–7705.
Bowyer, K. W. and Doyle, J. S. (2014). Cosmetic Con-
tact Lenses and Iris Recognition Spoofing. Computer,
47(5):96–98.
Bowyer, K. W., Hollingsworth, K., and Flynn, P. J. (2008).
Image Understanding for Iris Biometrics: A Sur-
vey. Computer Vision and Image Understanding,
110(2):281–307.
Choudhary, M., Tiwari, V., and Venkanna, U. (2019). An
approach for iris contact lens detection and classifica-
tion using ensemble of customized densenet and svm.
Future Generation Computer Systems, 101:1259–
1270.
Daugman, J. (2003). Demodulation by complex-valued
wavelets for stochastic pattern recognition. Interna-
tional Journal of Wavelets, Multiresolution and Infor-
mation Processing, 1(01):1–17.
Daugman, J. G. (1993). High Confidence Visual Recogni-
tion of Persons by a Test of Statistical Independence.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(11):1148–1161.
Doyle, J. and Kevin, B. (2014). Notre Dame Im-
age Database for Contact Lens Detection In Iris
Recognition-2013: README.
Doyle, J. S., Bowyer, K. W., and Flynn, P. J. (2013). Varia-
tion in Accuracy of Textured Contact Lens Detection
based on Sensor and Lens Pattern. In IEEE Inter-
national Conference on Biometrics: Theory, Applica-
tions, and Systems, pages 1–7.
Flom, L. and Safir, A. (1987). Iris recognition system. US
Patent 4,641,349.
Galbally, J., Marcel, S., and Fierrez, J. (2014). Image Qual-
ity Assessment for Fake Biometric Detection: Ap-
plication to Iris, Fingerprint, and Face Recognition.
IEEE Transactions on Image Processing, 23(2):710–
724.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. Book in preparation for MIT Press.
He, Z., Sun, Z., Tan, T., and Wei, Z. (2009). Efficient iris
spoof detection via boosted local binary patterns. In
International Conference on Biometrics, pages 1080–
1090. Springer.
Kohli, N., Yadav, D., Vatsa, M., and Singh, R. (2013). Re-
visiting Iris Recognition with Color Cosmetic Contact
Lenses. In International Conference on Biometrics,
pages 1–7.
Komulainen, J., Hadid, A., and Pietikainen, M. (2014).
Generalized Textured Contact Lens Detection by Ex-
tracting BSIF Description from Cartesian Iris Images.
In IEEE International Joint Conference on Biomet-
rics, pages 1–7.
Menotti, D., Chiachia, G., Pinto, A., Schwartz, W., Pedrini,
H., Falc
˜
ao, A., and Rocha, A. (2015). Deep Repre-
sentations for Iris, Face, and Fingerprint Spoofing De-
tection. IEEE Transactions on Information Forensics
and Security, 10(4):864–879.
Ming, Z., Visani, M., Luqman, M. M., and Burie, J.-C.
(2020). A survey on anti-spoofing methods for facial
recognition with rgb cameras of generic consumer de-
vices. Journal of Imaging, 6(12):139.
Morales, A., Fierrez, J., Galbally, J., and Gomez-Barrero,
M. (2021). Introduction to presentation attack de-
tection in iris biometrics and recent advances. arXiv
preprint arXiv:2111.12465.
Pan, S. J. and Yang, Q. (2010). A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engi-
neering, 22(10):1345–1359.
Prabhakar, S., S., P., and Jain, A. K. (2003). Biometric
recognition: Security and privacy concerns. IEEE Se-
curity & Privacy, 1(2):33–42.
Raghavendra, R. and Busch, C. (2015). Robust Scheme
for Iris Presentation Attack Detection Using Mul-
tiscale Binarized Statistical Image Features. IEEE
Transactions on Information Forensics and Security,
10(4):703–715.
Raghavendra, R., Raja, K. B., and Busch, C. (2017). Con-
tlensnet: Robust iris contact lens detection using deep
convolutional neural networks. In 2017 IEEE Win-
ter Conference on Applications of Computer Vision
(WACV), pages 1160–1167. IEEE.
Ramachandran, P., Zoph, B., and Le, Q. V. (2017).
Searching for activation functions. arXiv preprint
arXiv:1710.05941.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115(3):211–252.
An Efficient Contact Lens Spoofing Classification
447