ACKNOWLEDGEMENTS
This work is supported by the Italian Ministry of Education,
University and Research within the PRIN2017 -
BullyBuster project - A framework for bullying and
cyberbullying action detection by computer vision and
artificial intelligence methods and algorithms.
REFERENCES
Chatzakou, D., Kourtellis, N., Blackburn, J., de Cristofaro,
E., Stringhini, G., & Vakali, A. (2017). Mean Birds:
Detecting Aggression and Bullying on Twitter. WebSci
2017 - Proceedings of the 2017 ACM Web Science
Conference, 13–22. https://arxiv.org/abs/1702.06877v3
Chen, J., Yan, S., & Wong, K. C. (2017). Aggressivity
detection on social network comments. ACM
International Conference Proceeding Series, Part
F127854, 103–107.
https://doi.org/10.1145/3059336.3059348
Costa, P. T., & McCrae, R. R. (1992). Four ways five
factors are basic. Personality and Individual
Differences, 13(6), 653–665.
https://doi.org/10.1016/0191-8869(92)90236-I
Davidson, T., Warmsley, D., Macy, M., & Weber, I. (n.d.).
Automated Hate Speech Detection and the Problem of
Offensive Language *. Retrieved September 14, 2021,
from www.facebook.
Dentamaro, V., Giglio, P., Impedovo, D., & Pirlo, G.
(2021). Benchmarking of Shallow Learning and Deep
Learning Techniques with Transfer Learning for
Neurodegenerative Disease Assessment Through
Handwriting. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
12917 LNCS, 7–20. https://doi.org/10.1007/978-3-
030-86159-9_1
Dentamaro, V., Impedovo, D., & Pirlo, G. (2020). Gait
Analysis for Early Neurodegenerative Diseases
Classification through the Kinematic Theory of Rapid
Human Movements. IEEE Access, 8, 193966–193980.
https://doi.org/10.1109/ACCESS.2020.3032202
Dredge, R., Gleeson, J., & de La Piedad Garcia, X. (2014).
Presentation on Facebook and risk of cyberbullying
victimisation. Computers in Human Behavior, 40, 16–
22. https://doi.org/10.1016/J.CHB.2014.07.035
Goodboy, A. K., & Martin, M. M. (2015). The personality
profile of a cyberbully: Examining the Dark Triad.
Computers in Human Behavior, 49, 1–4.
https://doi.org/10.1016/J.CHB.2015.02.052
Ishara Amali, H. M. A., & Jayalal, S. (2020). Classification
of Cyberbullying Sinhala Language Comments on Social
Media. MERCon 2020 - 6th International
Multidisciplinary Moratuwa Engineering Research
Conference, Proceedings, 266–271.
https://doi.org/10.1109/MERCON50084.2020.9185209
Islam, M. Z., Liu, J., Li, J., Liu, L., & Kang, W. (2019). A
semantics aware random forest for text classification.
International Conference on Information and Knowledge
Management, Proceedings, 1061–1070.
https://doi.org/10.1145/3357384.3357891
John, O. P., & Srivastava, S. (n.d.). The Big-Five Trait
Taxonomy: History, Measurement, and Theoretical
Perspectives.
Kumari, K., & Singh, J. P. (2021a). Multi-modal cyber-
aggression detection with feature optimization by
firefly algorithm. Multimedia Systems.
https://doi.org/10.1007/S00530-021-00785-7
Kumari, K., & Singh, J. P. (2021b). Identification of
cyberbullying on multi-modal social media posts using
genetic algorithm. Transactions on Emerging
Telecommunications Technologies, 32(2), e3907.
https://doi.org/10.1002/ETT.3907
Kumari, K., Singh, J. P., Dwivedi, Y. K., & Rana, N. P.
(2021a). Bilingual Cyber-aggression detection on
social media using LSTM autoencoder. Soft Computing
2021 25:14, 25(14), 8999–9012.
https://doi.org/10.1007/S00500-021-05817-Y
Kumari, K., Singh, J. P., Dwivedi, Y. K., & Rana, N. P.
(2021b). Multi-modal aggression identification using
Convolutional Neural Network and
Binary Particle Swarm Optimization. Future
Generation Computer Systems, 118, 187–197.
https://doi.org/10.1016/J.FUTURE.2021.01.014
M, R. v, Kumar, M. P., Raman, S. R., & Sridhar, R. (2017).
Emotion And Sarcasm Identification Of Posts From
Facebook Data Using A Hybrid Approach. Online)
Ictact Journal On Soft Computing, 2.
https://doi.org/10.21917/ijsc.2017.0197
Malmasi, S., & Zampieri, M. (2018). Challenges in
Discriminating Profanity from Hate Speech. Journal of
Experimental and Theoretical Artificial Intelligence,
30(2), 187–202. https://arxiv.org/abs/1803.05495v1
Paulhus, D. L., & Williams, K. M. (2002). The Dark Triad
of personality: Narcissism, Machiavellianism, and
psychopathy. Journal of Research in Personality, 36(6),
556–563. https://doi.org/10.1016/S0092-
6566(02)00505-6
Prastowo, E. Y., Endroyono, & Yuniarno, E. M. (2019).
Combining SentiStrength and Multilayer Perceptron in
Twitter Sentiment Classification. Proceedings - 2019
International Seminar on Intelligent Technology and Its
Application, ISITIA 2019, 381–386.
https://doi.org/10.1109/ISITIA.2019.8937134
Ramchoun, H., Amine, M., Idrissi, J., Ghanou, Y., &
Ettaouil, M. (2016). Multilayer Perceptron:
Architecture Optimization and Training.
International Journal of Interactive Multimedia
and Artificial Intelligence, 4(1), 26.
https://doi.org/10.9781/IJIMAI.2016.415
Raza, M. O., Memon, M., Bhatti, S., & Bux, R. (2020).
Detecting Cyberbullying in Social Commentary Using
Supervised Machine Learning. Advances in Intelligent
Systems and Computing, 1130 AISC, 621–630.
https://doi.org/10.1007/978-3-030-39442-4_45
Rendalkar, S., & Chandankhede, C. (2018). Sarcasm
Detection of Online Comments Using Emotion
Detection. Proceedings of the International Conference
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods