Chen, P., Liu, S., Zhao, H., & Jia, J. (2020). Gridmask data 
augmentation. arXiv preprint arXiv:2001.04086. 
Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. 
V.  (2019).  Autoaugment:  Learning  augmentation 
strategies  from  data.  In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (pp. 113-123). 
Cubuk,  E.  D.,  Zoph,  B.,  Shlens,  J.,  &  Le,  Q.  V.  (2020). 
Randaugment:  Practical  automated  data  augmentation 
with  a  reduced  search  space.  In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (pp. 702-703). 
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. 
(2009).  Imagenet:  A  large-scale  hierarchical  image 
database. In 2009 IEEE conference on computer vision 
and pattern recognition (pp. 248-255). IEEE. 
DeVries,  T.,  &  Taylor,  G.  W.  (2017).  Improved 
regularization  of  convolutional  neural  networks  with 
cutout. arXiv preprint arXiv:1708.04552. 
Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do 
we perceive in a glance at a real-world scene? Journal of 
vision, 7(1), 10-10. 
Frid-Adar,  M.,  Klang,  E.,  Amitai,  M.,  Goldberger,  J.,  & 
Greenspan,  H.  (2018,  April).  Synthetic  data 
augmentation  using  GAN  for  improved  liver  lesion 
classification.  In 2018 IEEE 15th international 
symposium on biomedical imaging (ISBI 2018) (pp. 289-
293). IEEE.  
Han, H., Jain, A. K., Wang, F., Shan, S., & Chen, X. (2017). 
Heterogeneous  face  attribute  estimation:  A  deep 
multitask  learning  approach. IEEE  transactions  on 
pattern analysis and machine intelligence, 40(11), 2597-
2609. 
Hand,  E.  M.,  &  Chellappa,  R.  (2017).  Attributes  for 
improved  attributes:  A  multitask  network  utilizing 
implicit  and  explicit  relationships  for  facial  attribute 
classification.  In Thirty-First  AAAI  Conference  on 
Artificial Intelligence. 
Howard,  A.,  Sandler,  M.,  Chu,  G.,  Chen,  L.  C.,  Chen,  B., 
Tan,  M.,  ...  &  Adam,  H.  (2019).  Searching  for 
mobilenetv3.  In Proceedings of the IEEE/CVF 
International Conference on Computer Vision (pp. 1314-
1324). 
Hrga,  I.,  &  Ivašić-Kos,  M.  (2019,  May).  Deep  image 
captioning:  An  overview.  In 2019 42nd International 
Convention on Information and Communication 
Technology, Electronics and Microelectronics 
(MIPRO) (pp. 995-1000). IEEE. 
Inoue, H. (2018). Data augmentation by pairing samples for 
images classification. arXiv preprint arXiv:1801.02929. 
Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-
to-image  translation  with  conditional  adversarial 
networks.  In  Proceedings of the IEEE conference on 
computer vision and pattern recognition  (pp.  1125-
1134). 
Jang,  Y.,  Gunes,  H.,  &  Patras,  I.  (2019).  Registration-free 
face-ssd: Single shot analysis of smiles, facial attributes, 
and  affect  in  the  wild. Computer  Vision  and  Image 
Understanding, 182, 17-29.  
Jung,  A.  B.,  Wada,  K.,  Crall,  J.,  Tanaka,  S.,  Graving,  J., 
Yadav, S.,  ...  & Laporte,  M.  (2020). Imaging.  GitHub: 
San Francisco, CA, USA. 
Karras,  T.,  Laine,  S.,  &  Aila,  T.  (2019).  A  style-based 
generator  architecture  for  generative  adversarial 
networks. In Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (pp.4401-
4410). 
Kingma,  D.  P.,  &  Ba,  J.  (2014).  Adam:  A  method  for 
stochastic optimization. arXiv preprint arXiv:1412.6980.  
Krizhevsky,  A.,  Sutskever,  I.,  &  Hinton,  G.  E.  (2012). 
Imagenet  classification  with  deep  convolutional  neural 
networks. Advances in neural information processing 
systems, 25, 1097-1105. 
Lemley,  J.,  Bazrafkan,  S.,  &  Corcoran,  P.  (2017).  Smart 
augmentation learning  is an  optimal  data augmentation 
strategy. Ieee Access, 5, 5858-5869. 
Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning 
face  attributes  in  the  wild.  In Proceedings of the IEEE 
international conference on computer vision (pp. 3730-
3738). 
Perez,  L.,  &  Wang,  J.  (2017).  The  effectiveness  of  data 
augmentation  in  image  classification  using  deep 
learning. arXiv preprint arXiv:1712.04621. 
Regulation (EU) 2016/679 of the  European  Parliament and 
of  the  Council  [online]  https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679&fr
om=HR#d1e40-1-1 [Accessed: 20
th
 October 2021.] 
Rudd, E. M., Günther, M., & Boult, T. E. (2016). Moon: A 
mixed objective optimization network for the recognition 
of  facial  attributes.  In European  Conference  on 
Computer Vision (pp. 19-35). Springer, Cham. 
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: 
A unified embedding for face recognition and clustering. 
In Proceedings  of  the  IEEE  conference  on  computer 
vision and pattern recognition (pp. 815-823). 
Sharma,  A.  K.,  &  Foroosh,  H.  (2020).  Slim-CNN:  A 
lightweight  CNN  for  face  attribute  prediction.  In 2020 
15th IEEE International Conference on Automatic Face 
and  Gesture  Recognition  (FG  2020) (pp.  329-335). 
IEEE. 
Shorten,  C.,  &  Khoshgoftaar,  T.  M.  (2019).  A  survey  on 
image  data  augmentation  for  deep  learning. Journal of 
Big Data, 6(1), 1-48. 
Singh, K. K., Yu, H., Sarmasi, A., Pradeep, G., & Lee, Y. J. 
(2018).  Hide-and-seek:  A  data  augmentation  technique 
for  weakly-supervised  localization  and  beyond. arXiv 
preprint arXiv:1811.02545. 
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & 
Salakhutdinov,  R.  (2014).  Dropout:  a  simple  way  to 
prevent neural networks from overfitting. The journal of 
machine learning research, 15(1), 1929-1958. 
Takahashi,  R.,  Matsubara,  T.,  &  Uehara,  K.  (2019).  Data 
augmentation  using  random  image  cropping  and 
patching for deep CNNs. IEEE Transactions on Circuits 
and Systems for Video Technology, 30(9), 2917-2931. 
Zhang,  H.,  Cisse,  M.,  Dauphin,  Y.  N.,  &  Lopez-Paz,  D. 
(2017).  mixup:  Beyond  empirical  risk 
minimization. arXiv preprint arXiv:1710.09412. 
Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2020). 
Random  erasing  data  augmentation.  In Proceedings of 
the AAAI Conference on Artificial Intelligence (Vol. 34, 
No. 07, pp. 13001-13008).