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Abstract: Dysphonic voices can be detected using features derived from speech samples. Works aiming at this topic 
usually deal with mono-lingual experiments using a speech dataset in a single language. The present paper 
targets extension to a cross-lingual scenario. A Hungarian and a Dutch speech dataset are used. Automatic 
binary separation of normal and dysphonic speech and dysphonia severity level estimation are performed and 
evaluated by various metrics. Various speech features are calculated specific to an entire speech sample and 
to a given phoneme. Feature selection and model training is done on Hungarian and evaluated on the Dutch 
dataset. The results show that cross-lingual detection of dysphonic speech may be possible on the applied 
corpora. It was found that cross-lingual detection of dysphonic speech is indeed possible with acceptable 
generalization ability, while features calculated on phoneme-level parts of speech can improve the results. 
Considering cross-lingual classification test sets, 0.86 and 0.81 highest F1-scores can be achieved for feature 
sets with the vowel /E/ included and excluded, respectively and 0.72 and 0.65 highest Pearson correlations 
can be achieved or severity prediction using features sets with the vowel /E/ included and excluded, 
respectively. 

1 INTRODUCTION 

Speech is becoming more and more popular as a 
biomarker for detecting diseases. There are numerous 
disorders that affect speech production (either by 
changing the organs or affecting the neuro-motor 
aspect) and therefore can be identified by acoustic-
phonetic features. Almost one third of the population 
is, at some point in their life, affected by dysphonia 
(Cohen et al., 2012). The term dysphonia is often 
inter-charged with hoarseness, nevertheless this 
terminology is inaccurate because hoarseness is a 
symptom of altered voice quality reported by patients, 
while dysphonia is typified by a clinically recognized 
disturbance of voice production (Johns et al., 2010). 
The concepts of voice disorder and dysphonia are not 
the same. A voice disorder occurs when somebody’s 
voice quality, pitch, and loudness are inappropriate 
for an individual’s age, gender, cultural background, 
or geographic location, while dysphonia considers 
only the auditory-perceptual symptoms of these 
(Boone et al., 2005). 

There are numerous works that deal with the 
automatic separation of dysphonic and normal speech 
by means of machine learning methods. There exist 
corpora containing sustained vowels, such as the 
Arabic Voice Pathology Database (AVPD), the 
German Saarbrücken Voice Database (SVD) and the 
Massachusetts Eye and Ear Infirmary (MEEI) speech 
database. However, speech databases containing 
continuous dysphonic speech are not easy to find. 
Various results have been shown  on various datasets. 
In Ali et al. (2017) researchers use the MEEI voice 
disorder database to test their designed and 
implemented health care software for the detection of 
voice disorders in non-periodic speech signals. The 
classification was done with a support vector machine 
(SVM) and the maximum obtained accuracy was 
96.21%. In their experiment, the sustained vowel /ah/ 
was used, vocalized by dysphonic patients and 
healthy controls. In Al-Nasheri et al. (2017) 
accuracies are reported to be 99.54%, 99.53%, and 
96.02% for MEEI, SVD, and AVPD. In their study a 
SVM was applied as a classifier on sustained vowel 
/a/ extracted from the databases for both normal and 
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pathological voices. Some of the works presented on 
the MEEI voice disorder database reveal very high 
results that led researchers to question the usefulness 
of the database. Muhammad et al. in (Muhammad et 
al., 2017) argue that the normal and pathological 
voices are recorded in two different environments in 
this database. Therefore, it is hard to distinguish 
whether the system is classifying voice features or 
environments. Using continuous speech is a different 
matter. Vicsi and her colleagues (Vicsi et al., 2011) 
used acoustic features measured from continuous 
speech to classify 59 speakers into healthy (26 
speakers) and dysphonia (33 speakers) groups. Their 
classification accuracies were in the range of 86%-
88%. Thus, these evaluations aiming for automatic 
separation of dysphonic and normal speech are hard 
to compare, because of the different datasets they 
used. 

Multilingual evaluation of such experiments and 
methods is rare. In (Shinohara et al., 2017), dysarthric 
speech is considered for corpora in three languages. 
The research uses only pitch related features and the 
experiments are monolingual, meaning that detection 
possibilities are evaluated on each dataset separately, 
but not done in a cross-lingual way. The aim of this 
work is to introduce a cross-language detection 
evaluation done on dysphonic speech from Hungarian 
and Dutch corpora. Beside the two-class decision, 
cross-lingual experiments are done also for 
estimating the severity of dysphonia. A support 
vector machine is used for classification and support 
vector regression (SVR) is used for severity 
estimation. 

In the next Section, the corpora and the methods 
used are introduced along with the evaluation 
scenarios. In Section 3, the results are detailed 
followed by their discussion. 

2 METHODS 

2.1 Database 

Two dysphonic speech datasets were used for the 
study: a Hungarian and a Dutch containing the same 
short tale (‘The North Wind and the Sun’) in each 
language. All patients gave signed consent for their 
voices to be recorded. Hungarian voice samples were 
collected from patients during their appointments at 
the Department of Head and Neck Surgery of the 
National Institute of Oncology. Each patient was a 
native speaker of Hungarian. A total of 148 patients 
were recorded (75 females and 73 males). The RBH 
scale (Wendler et al., 1986) was used for assessing 

the state of the patients, which gives the severity of 
dysphonia, where R stands for roughness, B for 
breathiness and H for overall hoarseness. H was used 
for severity labels for the Hungarian samples, ranging 
from 0 to 3: 0 - no hoarseness, 1 - mild hoarseness, 2 
- moderate hoarseness, 3 - severe hoarseness. Beside 
the patient samples, 160 healthy samples were 
recorded with the same age distribution. The 
distribution of the H value in the dataset is shown in 
Table 1.  

Dutch samples were recorded at the university 
hospital of KU Leuven, Belgium, from a total of 30 
patients visiting their speech therapist. Samples were 
assessed according to the GRBAS (Grade - overall 
judgement of hoarseness, Roughness, Breathiness, 
Asthenia, Strain) scale by Hirano’s study in 1981 in 
the Anglo-Saxon and Japanese territory (Omori, 
2011). The value G was used as severity labels, which 
ranges from 0 to 3, where 0 is the lack of hoarseness 
(normal), 1 is a slight degree, 2 is a medium degree, 
and 3 is a high degree of hoarseness. Beside the 
patient samples, 30 healthy samples were recorded 
with the same age distribution. The distribution of the 
G value in the dataset is shown in Table 1. Both H and 
G values mean the hoarseness of the voice in the 
different assessment protocols. For the sake of clarity, 
throughout the paper we will use the notation ‘H’ for 
the severity of both datasets. 

Automatic segmentation of the corpora was done 
by force-alignment automatic speech recognition 
(ASR) using the available transcription for both 
languages (Kiss et al., 2013). 

Table 1: Hoarseness distribution of datasets. 

  hoarseness assessment 

  0 1 2 3 

da
ta

se
t Hungarian 160 46 57 45 

Dutch 30 10 17 3 

2.2 Acoustic Features 

The list of acoustic features used in the study is shown 
in Table 2. It shows how each feature is summarized 
for a sample (its mean value, standard deviation or 
range). The calculation frame is also shown for each 
feature. A feature can be calculated on the entire 
sample without segmentation or only on phoneme /E/ 
(SAMPA alphabet) using phoneme level 
segmentation. /E/ was selected because, apart from 
the unstable schwa, it is the most frequent vowel in 
Dutch and Hungarian. The exact calculation place is  
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Table 2: List of acoustic features and their calculation details. 

Feature Calculation function for a sample Calculation frame Calculated on 

intensity mean, standard deviation, range 
(full, 1, 5, 10, 25 percentile) 100 ms full sample, vowel /E/ 

pitch mean, standard deviation, range 
(full, 1, 5, 10, 25 percentile), slope 64 ms full sample, vowel /E/ 

mfcc mean 25 ms full sample, vowel /E/ 
jitter mean, standard deviation 64 ms full sample, vowel /E/ 

shimmer mean, standard deviation 64 ms full sample, vowel /E/ 
HNR mean, standard deviation 64 ms full sample, vowel /E/ 
SPI - 25 ms full sample, vowel /E/ 

first two formants and 
their bandwidths mean, standard deviation 25 ms vowel /E/ 

IMF_ENTROPY_RATIO  full vowel vowel /E/ 

Table 3: Dysphonia classification results using model trained on Hungarian samples. 

features case acc sens spec F1 AUC 

with /E/ 
feature selection on Hungarian samples 0.88 0.85 0.90 0.87 0.92

evaluation on Dutch samples 0.86 0.86 0.87 0.86 0.95 

without /E/ 
feature selection on Hungarian samples 0.82 0.77 0.88 0.81 0.90 

evaluation on Dutch samples 0.81 0.83 0.80 0.81 0.91 

Table 4: Dysphonia severity estimation results using model trained on Hungarian samples. 

features case Spearman Pearson RMSE 

with /E/ 
feature selection on Hungarian samples 0.73 0.75 0.75 

testing on Dutch samples 0.74 0.72 0.79 

without /E/ 
feature selection on Hungarian samples 0.71 0.73 0.79 

testing on Dutch samples 0.66 0.65 0.88 
 
also noted in the table. Each feature was calculated 
with a 10 ms timestep. 

2.3 Classification and Regression 

Binary classification (healthy vs. dysphonic speech) 
was done by support vector machines (Chang & Lin, 
2011) (c-SVM). SVM was chosen as it is a common 
baseline classifier with appropriate performance and 
generalization ability achieved on limited number of 
data (Tulics et al., 2019). A linear kernel function was 
used and the hyperparameter C (cost) was set to 1. 
Severity of dysphonia was estimated by support 
vector regression (epsilon-SVR). Also here, a linear 
kernel function was applied with C set to 1. Cross-
lingual experiment scenarios were created in which 
the Dutch corpus  was applied as an independent test 
dataset and the corpus of the Hungarian samples was 
used as a training-development set in a 10-fold cross-
validation setup (folds are disjoint over the speaker 

set). Because the Dutch corpus had a limited number 
of samples, training a model with these samples is not 
yet possible. Feature selection was done on the 
training-development set by applying an evolutionary 
algorithm (Jungermann, 2009) (parameters: 5 as 
population size, 1 as minimum number of features, 30 
as maximum number of generations). The 
experiments were carried out in RapidMiner 9.2 
(RapidMiner). 

Performance of classification was evaluated by 
the following metrics: accuracy, sensitivity, 
specificity, F1-score and are under the curve (AUC) 
score. Severity score estimation (regression) was 
evaluated by Spearman and Pearson correlation and 
root mean square error (RMSE). 
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3 RESULTS 

Classification and regression tests were carried out to 
evaluate the cross-lingual detection possibilities of 
speech samples of dysphonia. The automatic 
separation possibility of dysphonic speech was 
examined through binary classification and automatic 
severity level estimation was investigated by 
regression.  Due  to  the  cross-lingual  nature  of  the  

 
Figure 1: Scatter plot of original and the estimated H scores 
for Hungarian-Dutch cross-lingual scenario with features 
derived from the vowel /E/. 

 
Figure 2: Scatter plot of original and the estimated H scores 
for Hungarian-Dutch cross-lingual scenario without 
features derived from the vowel /E/. 

experiments, training and test samples differ in 
language, so language specific features may reduce 
performance. Therefore, two sets of initial feature sets 
were applied: one including all features calculated 
both on the entire sample and on the vowels /E/ (listed 
in Table 1), and the other set was a reduced set 
including only the features calculated on the entire 
sample without applying any features resulting from 
language specific pre-processing. Our aim was to 
examine if language-dependent processing such as 
phoneme-level segmentation and calculation of 
features of phoneme /E/ could improve or worsen the 
results. 

3.1 Dysphonic Speech Classification 

Results of classification evaluation are shown in 
Table 3 for the two feature sets (with and without 
features derived from vowel /E/, respectively). 
Accuracy, sensitivity, specificity, F1-score and AUC 
values are shown, in this order. Results on both the 
training-development and the test sets are shown. If 
both are equal or close, the generalization ability of 
the trained model can be considered good in the 
targeted language. As the table shows, training on 
Hungarian samples, both feature sets have a good 
generalization. Features using vowel /E/ performed 
better in this case. Considering test sets, 0.86 and 0.81 
highest F1-scores can be achieved for feature sets 
with the vowel /E/ included and excluded, 
respectively. 

3.2 Dysphonic Severity Estimation 

Similar to classification, results of severity score 
estimation (regression) are shown in Table 4 for the 
two feature sets (with and without features derived 
from vowel /E/, respectively). Spearman, Pearson 
correlations and root mean square error (RMSE) 
values are shown, in this order. As expected, similar 
tendencies can be observed for both cross-lingual 
directions and feature sets. Training the model with 
Hungarian samples and evaluating it on Dutch 
samples shows a high generalization ability and a 
reasonable accuracy, with better results using all 
features. Considering test sets, 0.72 and 0.65 highest 
Pearson correlations can be achieved for features sets 
with the vowel /E/ included and excluded, 
respectively. Figures 1 and 2 show the scatter plots of 
original and the estimated H scores for the two 
features sets. Markers are plotted with transparent 
colours in order to see their distribution. 

4 DISCUSSION 

As the results show, cross-lingual detection of 
dysphonic speech may be possible. There are two 
main statements that can be derived from the analysis: 
(1) an acceptable generalization ability can be 
achieved and (2) phoneme-level features measured on 
/E/ can enhance cross-lingual results. 

The Hungarian sample set contains much more 
samples than the Dutch set (~5 times more). This 
surely has a significant effect on performance. 
Results here are obtained by building models using 
Hungarian samples and evaluating them on the Dutch 
corpus, while the other direction is not possible due 
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to the low number of Dutch samples. It is clear that 
30 samples are not enough for building a model, let 
alone a model sufficient for cross-lingual purposes. It 
may lead to overfitting and low generalization. 
Training the model with the Hungarian set results in 
comparable evaluation metrics on the development 
and the test sets, showing a good generalization 
ability. About 300 samples (the used Hungarian 
corpus) seems to be sufficient to train a model for 
cross-lingual usage.  Here, the goal was not to 
maximize the performance of one language, but to do 
a preliminary study on cross-lingual detection 
possibilities using the dataset. A comprehensive 
study on the Hungarian sample set has been carried 
out by Tulics et al. (2019).  

Features calculated on phonemes also seem to 
have an effect on cross-lingual performance. These 
features can increase performance, as was seen with 
models built on Hungarian samples. Segmentation 
was done automatically by force-alignment ASR. 
Naturally, this automatic method may have errors, but 
it seems that performance increase is possible even 
with such a fully automatic pipeline. 

Regression results show the same tendency as 
classification. A higher level of severity increases the 
dysphonia separation ability of features. 

Two languages are considered here, Dutch and 
Hungarian, mainly because there were speech 
samples available with same linguistic content. 
However, we acknowledge that this somewhat limits 
the cross-lingual generalization ability due to the 
spectral similarities of the two languages. As a future 
research, it would be good to extend the study with 
languages with larger differences.  

5 CONCLUSIONS 

In the present work, cross-lingual experiments of 
dysphonic voice detection and dysphonia severity 
level estimation are carried out. The results show that 
this is possible using the datasets presented. Various 
acoustic features are calculated on the entire speech 
samples and at the phoneme level.  

It was found that cross-lingual detection of 
dysphonic speech is indeed possible with acceptable 
generalization ability and features calculated on 
phoneme-level parts of speech can in improve the 
results. Support vector machines and support vector 
regression are used as classification and regression 
methods. Feature selection and model training is done 
on dataset using 10-fold cross validation of one 
(source) language and evaluated on the other (target) 
language. Considering cross-lingual classification 

test sets, 0.86 and 0.81 highest F1-scores can be 
achieved for features sets with the vowel /E/ included 
and excluded, respectively and 0.72 and 0.65 highest 
Pearson correlations can be achieved for features sets 
with the vowel /E/ included and excluded, 
respectively. In the future, cross-linguistic 
experiments are considered using more language 
independent feature extraction techniques and 
extended datasets. 
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