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Abstract: The software architecture represents an important asset, constituting a shared vision amongst the software 
engineers of the various system components. Good architectures link to modular design, with loose coupling 
and cohesion defining which operations are grouped together to form a modular architectural entity. 
Modularity is achieved by practice otherwise we may observe a mismatch where the source code diverges 
from the primary architectural vision. In fact, class groups with dense interdependencies denote the real 
architectural entities as derived and implied directly from source code. In this work, we created a tool to assist 
in mining the actual system architecture. We extract all sorts of dependencies by processing all source files, 
and then using graph clustering, we capture and interactively visualize strongly coupled class groups with 
configurable weights. We also support forced clustering on namespaces, packages and folders. 

1 INTRODUCTION 

In software engineering there are no concrete 
engineering protocols prescribing the transformation 
of architectures into thoroughly implemented 
systems. Overall, it is mainly experience, practices, 
guidelines, directives, patterns, and generally 
engineering knowledge, driving the process of coding 
a system, starting from an initial architecture. Once 
the initial software system version is developed and 
published, even the assessment of the degree of 
conformance between the produced source code and 
the intended architecture remains a big challenge. 
Usually, this is a second priority since the emphasis 
in the production process is on feature delivery, 
system integration and defect resolution, all under a 
usually very strict time schedule.  

Thus, once all are satisfied that the original 
requirements are met and that the system is reliable 
enough to be rolled out, the potential architecture-
code mismatch is not even put on the table as an issue 
deserving examination. In fact, we are not aware of 
any experience report or a post-development activity 
spending some effort to effectively investigate this 
topic. But even when there is no start-up distance 
between the code and its underlying architecture, 
once a system evolves and new features are inserted, 

the symptom of architecture decay will likely soon 
appear. Such architecture decay may seriously restrict 
the chances for reuse at the macroscopic scale, since 
component-level reuse is very sensitive to the 
underlying implementation-specific dependencies. 

 
Figure 1: Typical cases of architecture decay denoting that 
erosion is usually proportional to code increase. 

Architecture decay or erosion (Terra et al., 2012) 
is observed when there is a considerable divergence 
between the actual system architecture, as implied 
from the source code and its inherent component 
structure and dependencies, and the assumed software 
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architecture communicated inside the development 
team. Under Figure 1, the notion of architecture 
degeneration is illustrated. Only basic cases are 
shown, since decay may appear with alternative 
patterns and variations due to successive evolution 
rounds. 

One reason explaining the decay phenomenon is 
software entropy (Hunt and Thomas, 1999) linking to 
imperfect implementation practices and coding habits 
commonly denoted as code smells (Tufano et al, 
2015). Accumulated insertions of new low-quality 
source code tend to propagate to all aspects of the 
software system, including its software architecture 
and how precisely or clearly the conceptual 
components map to code. Erosion is also linked to the 
entropy phenomenon, observed as an uncontrolled 
increase of dependencies, leading to chaotic tight 
coupling, making components depend on each other 
at various levels and in numerous ways. However, 
erosion is not exclusively a symptom of size 
escalation through poor quality code. It may well 
occur even with high-quality code extensions, once 
the inherent effort to revisit the architecture is not 
invested. 

Overall, good architecture design rents its roots to 
modular design, with loose coupling and cohesion 
defining when operations are grouped together to 
form a modular architectural entity. Clearly, the role 
of dependencies in reverse engineering (Kienle and 
Moeller, 2010) and in software architecture was set 
before, as a basis to recover architectures (de Silva 
and Balasubramaniam, 2012) and to reveal the reality 
underneath the code as source dependencies imply 
respective architectural dependencies. In fact, based 
on modular design foundations, a strong and precise 
implementation directive can be derived: 

For any two given components A, B: 
 dep (A,B) in architecture  

 dep (A,B) in code 

2 RELATED WORK 

Earlier work has tried to address the erosion problem 
by enabling architectures to evolve (Breivold et al., 
2012), (Ford et al., 2019) in a way aligned with 
changing requirements. Such methods cannot 
guarantee an alignment between architecture and 
code, even if modelling (like UML) and formal logic 
are combined (Barnes et al., 2014), since source code 
growth itself does not follow strictly formal models. 
Various tools to statically analyze source code exist, 
usually extracting dependencies and metrics, like 

Sourcetrail (Sourcetrail tool, 2021) and Understand 
(Understand tool, 2021). Rigi (Kienle Moeller, 2010) 
is a notable system enabling interactively navigate in 
dependency graphs, but is mostly a tool for inspecting 
code relationships, not supporting architecture 
recovery. An earlier effort in (Rakic et al., 2014) 
proposed a comprehensive set of language-
independent dependencies that we also adopted. 
However, we also had to introduce parameterized 
generic types in order to handle the complicated 
dependencies emerging due to the template type 
system of the C++ language. 

All existing tools offer browsing in dependency 
graphs, helping to track code dependencies at a very 
low-level. Clearly, they do not provide some 
macroscopic picture, but give an alternative graph-
like look on the source code itself. Compared to such 
previous work, we exploit code dependencies to 
reveal the actual architecture components of a system. 
To identify tightly connected groups, representing 
likely components, we use and assess various graph 
clustering algorithms. 

3 IMPLEMENTATION 

The primary goal of this work is to examine 
systematically the potential of dependency-oriented 
graph clustering for architecture recovery. In this 
context, we decided to develop a software tool to 
support our aims, meeting two key requirements: (i) 
can extract all relationships of interest directly from 
the source code; and (ii) supports alternative 
clustering algorithms, while offering a rich set of 
interactive configurations for the visualizer. Then, 
another important target was the investigation of the 
types of common dependency motifs appearing in 
clustered graphs, and their association with design 
properties and architectural semantics. 

In our tool, we supported C++ source code mainly 
due to the challenges implied by pointers, multiple-
inheritance, templates (with partial and full 
specialization), lambda functions, and automatic type 
inference. Nevertheless, the contribution is not 
dependent on C++ and is along the following lines: 

 We classify dependencies in four basic types, 
namely deploys, contains, inherits and template 
(i.e. generic parametric type) while introducing 
weighting and filtering options based on repeated 
presence of the same dependency.  

 We apply graph-clustering algorithms, combined 
with optional ad-hoc clustering by package, 
folder and namespace, to capture tightly coupled 
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class-groups, via an extensible set of algorithms. 
Such intrinsically strongly coupled class groups 
will effectively denote the real architectural plan 
behind the source code.  

We also explore and suggest potential dependency 
patterns that may expose higher-level truths regarding 
the underlying implementation architecture, and we 
discuss a few patterns we initially identified: base, 
utility, main, unused, divorce and pair. This 
essentially leads to another notion of patterns, besides 
architecture patterns (Buschmann et al., 1996), 
according to the way class-level dependencies are 
topologically formed, at a macroscopic level. 

3.1 System Overview 

Our system consists of two main components: (i) the 
backend, producing a global dependency graph by 
parsing all source files of an application system, 
implemented in C++ on top of the Clang compiler-
frontend toolchain; and (ii) the frontend, computing 
and rendering graph clusters, while supporting 
alternative clustering algorithms and numerous 
configuration options for visualizing graphs and 
dependencies (see Figure 2).  

 
Figure 2: Overview of the miner software architecture. 

The global class-table enumerates all classes, 
including templates, and keeps a global (full system, 
across files and packages) symbol table. Method 
signatures, class fields, method invocations, type and 
use of local variables, etc., are all kept in detail, and are 
used to compute every class-level dependency. The 
main goal of this system is reconstruction of the actual 
architecture, directly from source code, by computing, 
analyzing, and clustering dependencies. This idea 
relies on modular design and the following statement: 

In a modular architecture, any two given 
classes which belong to different components, 

must be loosely-coupled 

Following this statement strongly coupled classes 
reside in the same component. This is essentially a 
precondition for the mapping of modular 
architectures to code, and we consider it as the key 
criterion to recover the real architecture behind the 
source code. Next, we briefly explain the key 
processing phases of our system. 

3.2 Dependency Analysis 

Such analysis is performed after syntactic and 
semantic analysis, by examining class dependencies 
that result from inheritance, member fields, friend 
classes and methods and class nesting. In addition, all 
object types involved in a class implementation are 
checked, including method arguments, local variables 
and all member access expressions using objects of 
another class. Therefore, the dependencies between 
classes maybe divided in two categories: (i) primary 
dependencies, due to inheritance, field definitions, 
method signatures, and friends, visible in class 
declarations; and (ii) secondary dependencies, 
arising from all object uses in the implementation of 
methods, visible only in class definitions. In our 
miner, we handle such dependencies similarly, but we 
also allow the assignment of different weights via the 
interactive configuration tools. 

3.2.1 Ignoring Unwanted Symbols 

During dependency analysis, exhaustive parsing is 
carried out, involving all system source files and 
headers. This may result in millions of lines of code, 
even for small-scale systems, due to the use of third-
party libraries, which, however, do not contribute to 
the architecture recovery process. For this reason, we 
allow define namespaces and folders whose hosted 
classes are excluded from dependency analysis, and 
are thus not inserted in the global dependency graph. 
Typical cases for exclusion are the C++ std 
namespace and folders for platform-specific libraries 
or open source sub-systems. 

3.2.2 Handling Templates 

The template system is an advanced mechanism in 
C++ to implement libraries of generic classes and 
functions, and relates to parameterized types and 
generics in other languages. Such idioms and 
constructs are heavily used in large-scale code, while 
due to type parameterization and specialization they 
make inherent dependencies very hard for humans to 
manually inspect and locate.  
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Figure 3: Computing all dependencies involving template 
classes (in grey), template full specializations (in orange), 
partial template specializations (in green), and their link to 
non-template classes (in blue, no border). 

Effectively, it is crucial to track all dependencies 
caused by templates, otherwise, only a partial picture 
of the underlying class relationships is revealed. 
Under Figure 3, we outline representative scenarios 
of dependencies occurring when template base 
classes and template inheritors are defined, which are 
all fully captured in our system. 

3.3 Clustering and Visualization 

Initially, the graph is flat containing only atomic 
nodes, while we use grouping nodes into so-called 
super nodes to impose structure and derive 
components by clustering. The miner is extensible in 
terms of clustering algorithms, supporting as output 
primary clusters and optionally nested ones, if the 
latter are also output by the used algorithm. We 
require that algorithms can handle weights, while it is 
desirable to support directed edges or multi-level 
clustering. We have already implemented and 
installed three algorithms, chosen also because of 
their varying behavior, namely Louvain (Blondel et 
al., 2008), Infomap (Rosvall et al., 2009) and Layered 
Label Propagation (Raghavan et al., 2007). 

In Figure 3, we show the output, following the 
application of the Infomap algorithm, on the C++ 
implementation of the Super Mario video game, 
including in the source code base the entire game 
engine and all accompanying utilities. It should be 
noted that the rest algorithms also gave satisfactory 
results, but not so close to what the game developers 
considered to better match their own understanding 
of their system’s architecture.  

As depicted in Figure 3 (red outlined rectangles), a 
few components are misplaced, meaning they we may 

relocate them inside another component reasonably, 
that is without breaking the dependency-based 
grouping semantics of modular design.  The problem 
here is that the graph clustering algorithms are quite 
rigid, emphasizing stronger inner dependencies for the 
nodes of the same cluster. Therefore, classes with just 
a few outgoing dependencies are likely assigned to the 
cluster having most edges towards them, which can be 
a false positive in terms of architecture semantics. We 
discuss more on this in our findings as part the next 
section. 

Besides visual parameters, the active clustering 
algorithm can be changed during visualization, 
without requiring any reparsing and reanalysis of the 
source code files. This is possible because the global 
dependency graph is stored separately and contains 
all detailed dependencies and class meta-data needed 
for clustering to work.  

This makes visual inspection very fast and more 
useful, enabling developers examine alternative 
groupings and architectural views, as produced by the 
various algorithms. However, it is important that they 
are aware of the characteristics of the clustering 
approach of each such algorithm, regarding the use of 
dependencies, edges weights and general grouping 
strategy. This way, they can assess which method 
better fits their study. 

4 CASE STUDIES 

We processed a few systems in our case study, 
supplying also as input the miner itself (the part in 
C++).  In Figure 4, one view for an open source 
version of the Super Mario platform game is provided 
- the visualizer offers configurations allowing 
alternative depictions, including the dynamic 
switching of the clustering algorithm. 

During our case study we examined various 
visualization alternatives and analyzed the 
architectural semantics behind the various grouping 
formations and patterns we observed. Very quickly, a 
few common structures appeared, with an 
interpretation matching the documented role of the 
respective source elements in their system and the 
module interrelationships. Hence, we tentatively 
defined the notion of dependency patterns as 
connectivity styles in class dependency graphs that 
say something valid about the roles and relationships 
of the involved classes.  
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Figure 4: Visualizing dependencies and clustering to capture the components of Super Mario game (with Infomap) – all top-
level components are well captured (engine, app and utilities), but some sub-components are misplaced (red outlined). 

Such information, due to erosion, may be absent 
in the currently assumed architecture. When 
combined with clustering, the dependency patterns 
can reveal more aspects of the actual architecture, and 
even suggest source code repackaging.  

This notion of dependency patterns is different 
from architecture patterns (Taylor et al., 2009), the 
latter emerged in analogy to software patterns as 
common architecture recipes for structuring parts of 
a system implementation. In our study, as shown 
under Figure 5, we identified a number of dependency 
patterns that we verified in the examined systems. 
After careful analysis and many discussions with the 
developers of the original systems, it was clear that 
erosion is not only a matter of architecture image 
mismatch. Instead, it may also signify inconsistent 
module packaging, wrong file grouping and even 
class misnaming. 

Thus, once the real dependencies and respective 
clusters are revealed, more macroscopic source code 
refactoring and updates may be required to reflect the 
emerging relationships and modules. We briefly 
discuss below the few dependency patterns we 
identified, also depicted under Figure 5: 

 

Figure 5: Architectural dependency patterns. 
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 Base: cluster with considerable inner links, lack 
of any outgoing dependencies, and usually all 
incoming dependencies originated from just one 
or a couple clusters; 

 Utility: cluster with a lot of incoming 
dependencies, from many classes across clusters, 
in some cases from all, with commonly loose 
inner coupling (not many intra edges) and 
encompassing a set of many distinct and 
independent classes;  

 Main: cluster with a very distinctive role, that 
tends to depend on various classes from all the rest 
of clusters, while being characterized by relatively 
strong inner coupling; 

 Pair: cluster encompassing classes that are very 
strongly coupled, however, originally residing in 
different packages or namespaces (likely 

components), something possibly suggesting 
they should be placed into a single component; 

 Unused: cluster looking in the graph as an 
isolated island, with no edges to or from other 
classes or clusters, and with various forms and 
intensities of inner dependencies; 

 Divorce: cluster that happens to group together 
classes that initially belong to the same package 
or namespace, which however seem to be clearly 
decoupled, while having many incoming or 
outgoing links - when they share no external 
neighbors the divorce is even more evident. 

We also noticed the appearance of some of these 
patterns in multilevel clustering, inside sub-clusters.  
More specifically, we observed that the Main 
dependency pattern inside a cluster indicated a likely 

 

 

 

Figure 6: Visualization output (clustered components showing likely architecture as directly derived from the code) by 
applying our miner tool on its own source code base – use of multi-level Infomap algorithm (top) and Louven (bottom). 
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Façade design pattern implementation over the 
classes belonging to the rest of the sub-clusters. This 
is topologically reasonable, since the Main 
component represents the core application logic built 
on top of the rest of the classes, in analogy to the way 
Façade implements a custom adapted interface for the 
collective functionality over a number of classes. 
Also, we may observe in certain situations the 
presence of the Utility pattern inside an entire cluster, 
with outgoing links from all inner classes towards a 
specific group. This will almost always imply that 
such common utility functionality is quite specific 
and local to role of the component, likely explaining 
no incoming edges from external classes. 

4.1 Processing the Miner Source Code 

In Figure 6 (top part) the outcome of the Infomap 
algorithm for multi-level clustering (with nested 
components) is depicted. As observed, the graph is 
divided into three basic groups. Since sourceLoader 
(bottom-right isolated node) has no interrelationship 
with the other nodes it is be ignored for the rest of the 
discussion. Studying the main two groups, we 
observe that they represent the class data extraction 
of the symbol analysis (left group) and dependency 
graph composition of dependency analysis (right 
group), bot being primary components of our 
architecture.  

We further observe that these two components are 
independent, with no connecting edges between their 
inner elements. The link between them is the 
GraphGenerationSTVisitor node (shown with label 
1). Overall, this result is very valid and reflects the 
sequential flow of the system, very similar to 
compiler architectures in terms of dataflow.  We 
might expect this node to be part of the graph 
generation cluster (dependency analysis), but it seems 
that data traversing dependencies have attracted it to 
the data extraction group, which is still acceptable. 
Furthermore, the inner group structure is relative to 
assumption because it adheres to the above-
mentioned namespace categorization. It should be 
noted that no configuration over dependency type 
weights is used. It is remarkable that the Infomap 
algorithm divides nodes with only inner 

interconnections and incoming edges (labelled 2, 3, 4, 
5) and those with only outer dependencies (labelled 
1, 6) into separate clusters, treating them as 
independent components. As a result, it maintains the 
highest relative density of edges within the clusters. 
Our explanation for the very small distance between 
the designed arch and the recovered one from the 
source code of the tool is due to the lack of any actual 
system versions. Normally, a typical lifecycle of a 
system counts many updates, implying a significant 
amount of time for code evolution. It is actually after 
such update rounds that most architectural deviations 
begin to appear. Finally in Figure 6 (bottom part) the 
outcome of the Louvain algorithm for multi-level 
nested clustering is shown. At first glance, the graph 
appears to be divided into four major classes and 
groups. When we examine them more closely, we can 
see that the cluster on the right represents the 
dependency analysis component, as it also arises in 
the Infomap output, with only some minor differences 
in the structure of its inner groups. We also note that 
the logical component of the symbol analysis is now 
split into two subgroups, with the method-related 
nodes effectively placed in a separate group. Clearly, 
we can accept that the two outputs actually match and 
express the same architectural structure. 

4.2 Comparing Version Visualisations 

Finally, we briefly studied the effect of applying the 
miner on successive code versions and comparing the 
output structurally (manually, not with algorithms). 
This led us to an initial set of scenarios of Figure 7 
that we intend further explore, since linking structural 
changes with architectural semantics, such as 
component tolerance, is valuable information on how 
code evolution eventually affected the underlying 
architecture.  

In particular, from an early manual analysis of the 
results in one of the examined systems, we noticed 
that before class transfer, a number of well-defined 
and very common dependency changes occurred in 
the cluster due to various sequential small code 
updates. We also verified that in all cases where we 
observed a utility dependency pattern, it  

 
Figure 7: Possible update patterns when comparing the output dependency graphs for major successive code versions. 
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tended to remain almost intact across and unaffected 
code versions, and thus tolerate code changes. 

5 CONCLUSIONS 

We developed a tool for architecture recovery directly 
from source code and carried out a study on the results 
produced by using different working configurations. 
Our method tracks source code dependencies, 
prepares incrementally, by parsing and analysing all 
source files, a global dependency graph, and then 
applies clustering algorithms to compute likely 
architectural modules. The foundation of our 
approach is modularity theory and the essential 
criterial underpinning modular design, requiring 
loose coupling across components, with intensive 
dependencies appearing only as intra-component 
links. We observed good results when switching and 
playing with alternative clustering functions and 
parameters.  

Finally, we also explored two new ideas: (i) the 
notion of dependency patterns, where we identified a 
few cases frequently occurring in our study; and (ii) 
correlations of clustering output resulting from 
successive code versions to capture potential trends in 
the software evolution process.  

Although our focus on the second topic was more 
limited in time, we believe that version-specific 
clustered graphs collectively possess a lot of valuable 
information for further versioning analysis. 
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