Chang, C.-Y., & Clark, S. (2014). Practical Linguistic
Steganography using Contextual Synonym Substitution
and a Novel Vertex Coding Method. Computational
Linguistics, 40(2), 403–448. https://doi.org/10.1162/
COLI
Chang, C.-Y., & Clark, S. (2010). Human Linguistic
Steganography Using Automatically Generated
Paraphrases. Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, 591–599.
Fang, T., Jaggi, M., & Argyraki, K. (2017). Generating
Steganographic Text with LSTMs. Proceedings of ACL
2017, Student Research Workshop. https://doi.org/
10.18653/v1/P17-3017
Google n-gram viewer. (n.d.). In https://books.google.com/
ngrams.
Honnibal, M., & Montani, I. (2021). spaCy 2: Natural
language understanding with Bloom embeddings,
convolutional neural networks and incremental parsing.
In To appear.
Huffman, D. A. (1952). A Method for the Construction of
Minimum-Redundancy Codes. Proceedings of the IRE,
40(9), 1098–1101. https://doi.org/10.1109/
JRPROC.1952.273898
JOOS, M. (1967). The Five Clocks -- A Linguistic
Excursion Into The Five Styles Of English Usage.
Kerckhoffs, A. (1883). La cryptographie militaire. Journal
Des Sciences Militaires, 9, 5–38.
Kullback, S. (1959). Information theory and statistics (Vol.
15). New York : Dover Publications.
Meral, H. M., Sankur, B., Sumru Özsoy, A., Güngör, T., &
Sevinç, E. (2009). Natural language watermarking via
morphosyntactic alterations. Computer Speech and
Language, 23(1), 107–125. https://doi.org/10.1016/
j.csl.2008.04.001
Panckhurst, R., Détrie, C., Lopez, C., Moïse, C., Roche, M.,
& Verine, B. (2014). 88milSMS . A corpus of authentic
text messages in French.
Rissanen, J. J., & Langdon, G. G. (1979). Arithmetic
Coding. IBM J Res Dev, 23(2), 149–162. https://
doi.org/10.1147/RD.232.0149
Safaka, I., Fragouli, C., & Argyraki, K. (2016).
Matryoshka: Hiding Secret Communication in Plain
Sight. FOCI 2016.
Sagot, B., & Fišer, D. (2008). Building a free French
wordnet from multilingual resources. http://
www.globalwordnet.org
Shen, J., Ji, H., & Han, J. (2020). Near-imperceptible
Neural Linguistic Steganography via Self-Adjusting
Arithmetic Coding. The 2020 Conference on Empirical
Methods in Natural Language Processing. http://
arxiv.org/abs/2010.00677
Simmons, G. J. (1984). The Prisoners’ Problem and the
Subliminal Channel. In Advances in Cryptology.
Springer US. https://doi.org/10.1007/978-1-4684-
4730-95
Tatoeba. (n.d.). Tatoeba : recueil de phrases et de
traductions. Retrieved November 4, 2021, from https://
tatoeba.org/fr
Topkara, M., Taskiran, C. M., & Delp, E. J. (2005). Natural
Language Watermarking. SPIE 5681, Security,
Steganography, and Watermarking of Multimedia
Contents VII, (21 March 2005).
Tutuncu, K., & Hassan, A. A. (2015). New Approach in E-
mail Based Text Steganography. International Journal
of Intelligent Systems and Applications in Engineering,
3(2), 54. https://doi.org/10.18201/ijisae.05687
Wayner, P. (2009). Disappearing cryptography:
information hiding: steganography & watermarking.
Morgan Kaufmann Publishers.
Wilson, A., Blunsom, P., & Ker, A. D. (2014). Linguistic
steganography on Twitter: hierarchical language
modeling with manual interaction. In A. M. Alattar, N.
D. Memon, & C. D. Heitzenrater (Eds.), SPIE - The
international Society for Optical Engineering. https://
doi.org/10.1117/12.2039213
Yang, Z., Jin, S., Huang, Y., Zhang, Y., & Li, H. (2018).
Automatically Generate Steganographic Text Based on
Markov Model and Huffman Coding. IETE Technical
Review.
Yang, Z.-L., Guo, X.-Q., Chen, Z.-M., Huang, Y.-F., &
Zhang, Y.-J. (2019). RNN-Stega: Linguistic
Steganography Based on Recurrent Neural Networks.
IEEE Transactions on Information Forensics and
Security, 14(5). https://doi.org/10.1109/
TIFS.2018.2871746
Ziegler, Z. M., Deng, Y., & Rush, A. M. (2019). Neural
Linguistic Steganography. EMNLP 2019. http://
arxiv.org/abs/1909.01496