
 

 

Tiny Neural Network Pipeline for  

Vocal Commands Recognition @Edge 

Ivana Guarneri1, Alessandro Lauria2, Giovanni Maria Farinella2 and Corrado Santoro2 
1STMicroelectronics, System Research and Applications, Stradale Primosole 50, Catania, Italy 

2Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Catania, Italy 

Keywords: Speech Recognition, Deep Learning, Edge-AI. 

Abstract: Vocal analysis and speech recognition have been a challenge for the research community for a long time. The 

widespread of deep learning approaches, the availability of big datasets and the increasing computational 

capabilities of processors, have contributed to achieve disruptive results in this field. Most of the high 

performing existing speech recognition systems are available as cloud services. Other systems are hybrid, 

with some parts on the cloud and some modules running on the microcontroller. One of the challenges is to 

realize high performing speech recognition systems running on the edge, where the edge is an integrated 

platform, composed by a processing unit, a bank of memory and a power unit. In this paper is proposed an 

end-to-end deep learning approach to recognize a set of vocal commands able to work on an edge IoT node. 

Tests have been performed on a tiny platform and the study with different settings is reported.

1 INTRODUCTION 

Speech recognition is nowadays one of the most 

powerful and used application of artificial 

intelligence. Speech recognition engines reach high 

accuracy thanks to the exploitation of high 

performing hardware platforms coupled with 

complex deep neural architectures and the availability 

of large datasets. In the context of vocal analysis 

many improvements have been done thanks to the 

spread of new sophisticated deep learning techniques 

compared on the cloud. However, less attention has 

been given to automatic speech recognition (ASR) 

solutions to be employed on hardware platforms with 

limited capacities in terms of power processing and 

storage capacity. Deep neural network models need 

both a big amount of flash memory to store 

parameters and a high-power processing capability.  

In this paper we focus on the recognition of a set 

of vocal commands with the goal of developing a 

deep learning solution to be executed directly on a 

microcontroller, i.e., a platform with limited 

resources in terms of memory and processing 

capability.  

Most of the available works on vocal commands 

recognition with microcontrollers take inspiration 

from latest performing deep learning approaches used 

in the state of the art of ASR (Solovyev, 2018).  

Being ASR on a microcontroller the main target, 

the classical approaches are usually resized and 

modified trying to develop tiny deep learning 

architectures able to guarantee good performances.  

Interesting works are available in the literature. In 

(Zhang, 2018) the authors propose solutions for the 

keyword spotting problem. They trained different 

neural network architectures and compared the 

obtained results together with the memory and 

computing requirements. The study explains how to 

optimize the neural network architectures for a good 

fitting in the limited memory and how to obtain real 

time execution on the microcontroller without 

sacrificing the keyword spotting performances.   

In (McGraw, 2016) the authors present a compact 

speech recognition system with large vocabulary able 

to run on mobile devices with low latency and good 

performances. To reach this result they used a 

Connectionist Temporal Classification (CTC) based 

Long Short Term Memory (LSTM) compressed 

model. 

In (Sainath, 2015) the author explores a 

Convolutional Neural Network (CNN) for a small-

footprint keyword spotting task. The effectiveness of 

the approach is demonstrated on two different use 

cases: in the first one the number of multiplications is 
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limited, and, in the second one, the number of 

parameters is limited. The result of the comparison 

shows that CNN architectures give an improvement 

in the range 27-44% relative to false reject rate 

compared to other Deep Neural Networks (DNN). 

This paper proposes a solution for the automatic 

recognition of vocal commands to be executed on the 

edge. The considered edge platform is equipped with 

a processing unit, a bank of memory, a unit power, 

some sensors and connectivity. The developed 

solution runs directly on the microcontroller by 

processing data coming from the sensors which are 

also placed on the same board.  

Hence, the edge computing processes data 

directly on the board where they are generated. This 

aspect is important also for a privacy point of view 

and for ensuring a lower power consumption.  

It is worth noticing that when an algorithm runs 

on the cloud, data is usually transferred to and from a 

server. During the stream of data, the system is 

vulnerable, due to possible attacks. The typical data 

flow starts from an application running on a platform 

placed in the real world that captures data through its 

sensors. These data are used to take a decision or, in 

general, to generate a possible activation. Data is 

hence uploaded from sensors to the server. The output 

of the processing is sent back to the application. With 

this pipe, a processing unit running on the cloud can 

be attacked with possible private risks for the users. 

An edge processing unit no need to transfer data. 

It ensures the privacy of data and the energy 

consumption is contained due to lower power 

consumption of an IoT node which is lower than the 

one of the Cloud. 

We performed a study by means of a set of 

experiments that considered a deep learning 

algorithm able to classify 10 different speech 

commands. The solution has been tested on a very 

low constrained resourced IoT node named 

SensorTile (STMicroelectronics, 2019) produced by 

STMicroelectronics. This platform is equipped with a 

STM32L4 microcontroller running at 80MHz, 1MB 

of flash memory, 128KB of RAM and a digital 

microphone. 

The paper is organized as follows. Section 2 

describes the datasets used to train and test the 

proposed neural network system and reports the 

analysis done on the considered dataset. In Section 3, 

the details on the proposed method for short 

commands recognition are reported together with a 

summary of the results obtained by running the 

proposed algorithm on an STM32 microcontroller. 

Conclusions are given in Section 4.  

2 DATASETS 

The dataset used in this work has been populated by 

using data from two main repositories: Google 

Speech Commands Dataset (Warden, 2018) and Hey 

Snips Dataset (Coucke, 2019).  

The Google dataset contains 30 different words 

for a total of 65.000 audio files of one-second each. 

Each word has about 2000 samples. The dataset is 

released under Creative Commons BY 4.0 and it is 

constantly updated by the community. Words are 

pronounced by different speakers (both male and 

female subjects), and using microphones placed at 

various distances. 

 The Snips dataset is a Natural Language 

benchmark dataset, it contains a large variety of 

English accents and recording environments. It is 

composed of about 11K wake-word utterances and 

86.5K (∼96 hours) negative examples. 

The dataset used to train and test the proposed 

solution has been firstly arranged in four classes as 

reported in Table 1. The “Comms” class contains data 

from Google dataset and it is relative to ten vocal 

commands: go, stop, left, right, up, down, on, off, 

Marvin and Sheila. These commands are single words 

preceded and followed by silence. The other words 

available in the Google dataset have been used to 

represent the class “Words”.  

Part of the 86.5K negative examples from Snips’ 

dataset has been used to populate the class “Talk” 

with natural language phrases. The class 

“Background” contains audio relative to not human 

speaking, such as silence and environmental noise 

taken from youtube. The set of “Comms” in Table1 is 

aligned with the one used in other works presented in 

literature as, for example, in (Zhang, 2018) or in 

(Gouda, 2020); differently to these works we 

substituted “yes” and “no” with “Marvin” and 

“Sheila” because, in our future works, these names 

will be used to wake up robots to be piloted with the 

proposed vocal commands recognition system.  

Table 1: Dataset organized in four audio classes. 

Classes Description 

Comms 10 vocal commands of Google dataset: go, 

stop, left, right, up, down, on, off, Marvin, 

Sheila 

Words Words different from the 10 selected 

commands of Google dataset 

Talk Continuous speaking sampled by Snips’ 

dataset 

Background Silence and noise environments sound 

sampled from youtube 
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The first three classes shown in Table 1, have been 

partitioned through a K-Means processing (Xu, 2020) 

as proposed in Figure 1. 

K-Means is a classic algorithm to perform 

partition data from a semantic point of view. In this 

case it is used to perform a partition of the audio 

features for each class. We set K=2 to split in two 

clusters each class. The Background class has not 

been processed with K-Means because it includes 

homogeneous files. Figure 1 shows the dataset’s 

folders organization before and after the K-mean 

processing. 

 

Figure 1: Dataset before and after the K-mean processing. 

3 PROPOSED SYSTEM 

3.1 Tiny Networks Pipeline 

The proposed vocal command recognition system is 

configured as a cascade of two networks as shown in 

Figure 2.  

The “First Net” is trained and tested with 7 classes 

reported in Figure 1: Background, Comms_0, 

Comms_1, Talk_0, Talk_1, Words_0 and Word_1.  

The “Second Net” is trained and tested with 11 

classes: ten vocal commands plus a filler class 

containing single words different from the ten 

commands.  

 

Figure 2: First and Second Network. 

The selected 10 commands are: Marvin, Sheila, 

go, stop, left, right, up, down, off.  

The interaction between the two nets is handled 

by a state machine. We consider two main states, 𝑆0 

and 𝑆1. The execution of the First Net identifies the 

state. If the inference output of the First Net is the 

comms_0 or the comms_1 class, then the considered 

state is 𝑆1. In all other cases the state 𝑆0 is considered. 

The Second Net is executed only when the output of 

the First Net determines the state 𝑆1. In state 

𝑆0 the MFCC matrix is updated by following the 

FIFO order and maintaining the system in a low 

power mode profile.  

Figure 3 shows the general diagram of the entire 

system. 

 

Figure 3: Vocal command recognition system diagram. 

The input to the whole system is the audio stream 

captured by the microphone of the SensorTile. The 

output is one of the ten vocal commands or the Filler 

class. 

The input of both nets are the Mel Filter Cepstral 

Coefficients (MFCC) that are classic audio features 

(Hasan, 2021) (Albadr, 2021). The MFCC 

coefficients are organized in a matrix 13x28 that is 

continuously updated with new columns that are 

added to the queue according to a FIFO (First In First 

Out) order.  

Before the training step, the audio features are 

normalized according to the equation (1) to have a 

data distribution with zero mean and standard 

deviation equal to one. 

𝑥′ =
𝑥 − 𝜇

𝜎
 (1) 

were x is the original feature vector, 𝜇 and 𝜎 are 

the mean and the standard deviation of the training set 

respectively. Normalization is useful to speeds-up the 

convergence of the neural model during the training.  

The computed (𝜇,𝜎) are used to normalize the 

audio features processed in the inference step. The 

proposed system includes two neural models trained 

on different datasets, consequently two different sets 

of parameters are used to normalize the input of the 
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two networks. The 𝑁1 normalizes the MFCC in input 

of the First Net by applying the (µ1, 𝜎1) values 

obtained from the dataset used to train the First Net.   

Similarly, the 𝑁2 normalizes the MFCC in input 

to the Second Net by using (µ2, 𝜎2) obtained from the 

dataset used to train the Second Net.  

The audio signal has high energy when people are 

speaking and it has low energy when there is silence, 

to discriminate these two different cases a filter is 

applied on audio features as pre-processing step.  

This filter evaluates the temporal average value of 

MFCC zero coefficients (Guarneri, 2019) and this 

value is used as measure of the energy signal. The 

higher the energy, the higher the probability that a 

word has been pronounced.  

When the output of the filter is high, the audio 

frames are firstly normalized by the 𝑁1  and then are 

processed by the First Net. The Second Net is hence 

triggered and processes the audio after the 

normalization step with 𝑁2 only if the output of the 

First Net is classified as Comms_0 or Comms_1 

(state 𝑆1).  

The output obtained by the Second Net is the 

output of the overall system. 

3.2 Embedding on Microcontroller 

The proposed voice command recognition based on a 

cascade of networks has been selected after analysing 

different networks configurations and by taking in 

consideration the HW resources of the target edge 

platform.  More specifically, the recognition engine 

has been designed to be executed on a SensorTile 

board (Figure 4) which is a tiny, square-shaped IoT 

module that packs processing capabilities, leveraging 

an 80 MHz STM32L476JGY microcontroller and 

Bluetooth low energy connectivity based on the 

BlueNRG network processor as well as a wide 

spectrum of motion and environmental MEMS 

sensors. The board includes a digital microphone. The 

SernsorTile memory capability is 1MB of FLASH 

and 256 KB RAM. SensorTile can fit snugly in the 

users IoT hub or sensor network node to become the 

core computing platform of the developed solution. 

 

Figure 4: SensorTile IoT node. 

In edge computing it is fundamental to find the 

right trade-off between the complexity of the solution 

and its acceptable performance. In this scenario the 

proposed system has been tuned through several tests 

by considering the memory and power processing 

limitations of the SensorTile module. 

The two-nets final system, obtained after reducing 

its size and complexity, is constituted by two 

Recurrent Neural Networks (Cases, 2019) with a 

Long Short-Term Memory architecture (Palangi, 

2016) (Sak, 2014).  

The two LSTMs have different sizes, the first net 

includes two hidden layers each of 32 units, followed 

by a Fully Connected layer with 7 neurons.  

The second network is quite bigger than the first 

one including two hidden layers each of 64 units, 

followed by a Fully Connected layer with 11 neurons.  

The input of both nets is a 13x28 matrix of audio 

features.   

The memory requirements and the complexity of 

the proposed cascade architecture has been estimated 

by using the X-CUBE-AI (STMicroelectronics, X-

Cube-AI) expansion package part of the 

STM32Cube.MX ecosystem (STMicroelectronics, 

STM32Cube.MX).  

This tool automatically optimizes pre-trained 

networks and integrates the generated optimized 

library into the user's project. The X-CUBE-AI 

Expansion Package also offers the possibility to 

validate artificial intelligence algorithms both on 

desktop PC and STM32 microcontrollers. It is also 

possible to measure performance on STM32 devices 

without user handmade ad-hoc C code. As reported in 

Table 2, the required memory of the proposed system 

is 0.08MB which fits in the SensorTile’ FLASH. 

Table 2: Memory requirements of the system and of the 

target edge platform. 

Memory requirements of the 
cascade system  

0,08 MB 

SensorTile FLASH  1 MB 

3.3 Tests on Microcontroller 

To evaluate the performances in terms of accuracy, 

the proposed cascade system is compared with a 

baseline composed by a single network (Single Net). 

The single network is built trying to obtain a size 

comparable to the cascade network. In this way the 

two different systems, requiring the same amount of 

memory, can be properly compared in terms of 

accuracy and power saving capability. The Single Net 

is constituted by a LSTM architecture with 4 layers 

followed by a Fully Connected layer of 11 neurons. 

The first two layers are 16-units LSTM, while the 

other two are 32-units LSTM.  
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Details regarding memory requirements and 

complexity expressed in terms of multiply-

accumulate (MAC) operations, are reported in Table 

3 for the compared systems. 

Data related to the proposed cascade approach are 

obtained by summing the relative MAC and FLASH 

values of the First and Second nets composing the 

system.  

The proposed approach and the compared 

baseline based on a single net are very similar in 

terms of complexity and memory requirements. 

Table 3: Complexity and memory requirements of the 

proposed cascade approach and of the Single Net. 

APPROACH MAC FLASH 

Cascade approach  515649 80,55 KB 

Single Net 525795 79,68 KB 

The two networks have been both trained on 11 vocal 

commands. The accuracy for each class is reported in 

Table 4 

Table 4: Accuracy related to the 11 vocal commands. 

 Cascade Net Single Net 

Marvin 85 % 64% 

Sheila 93 % 81 % 

Left 83 % 61% 

Right 86 % 65 % 

Up 71 % 50 % 

Down 75 % 59 % 

Go 80 % 48 % 

On 78 % 63 % 

Off 73 % 74 % 

Stop 81% 67 % 

Filler 78 % 76% 

Avg 80,3 % 70,1 % 

Results illustrate how the cascade-based system is 

more accurate than the Single Net.  

The advantage of the proposed solution is not only 

relative to a higher accuracy but also to its 

contribution to the power saving aspect.  

A first contribution comes from the front-end 

processing of the Cascade Net system. The neural 

network inferences are performed only if the filter on 

MFCC zero coefficients estimates a high energy in 

the audio signal; the filter switches its output from 

low to high level when a change from a noiseless 

environment to a noisy one is detected. This means 

that in a quiet environment the inferences are not 

executed, and the system stays in a low power 

consumption mode.  

The second contribution comes from the handling 

of the two states 𝑆0 and 𝑆1 described in previous 

sections.  

The state machine changes the system's status 

from 𝑆0 to 𝑆1 only if the output of the First Net of the 

cascade system is classified as a command, otherwise 

it remains in 𝑆0 till the filter output is high. 

Considering that the audio stream content is mostly 

noise environment, continuous speaking or isolated 

words different from the few 10 selected commands, 

the system is for most of the time in the state 𝑆0; in 

this state only the First Net (which is smaller than the 

Second Net) is executed and the MCU overall system 

workload is reduced.  

The proposed cascade mechanism not only 

reaches a higher accuracy with respect to a Single Net 

architecture, but it is also a lower power solution. 

Future tests will be oriented to increase the 

robustness of the system to false positives. To reach 

this goal a retraining can be done by including data 

taken from the heterogeneous Multilingual Spoken 

Words Corpus (MSWC) dataset. The MSWC is a 

speech dataset of over 340,000 spoken words in 50 

languages, with over 23 million audio examples 

(Mazumder, 2021). The objective of the retraining is 

to obtain a model with higher capability to generalize 

and to handle differences in accents or dialects. 

4 CONCLUSIONS 

In this paper a tiny neural network pipeline able to 

classify vocal commands is proposed. The approach 

is based on a cascade pipeline which results in a 

power saving solution suitable to be executed on a 

tiny edge platform with low memory and power 

processing resources.  

The solution has been mapped on the STM32L4 

microcontroller and a comparison with a baseline 

architecture composed by a single network has been 

done. Results show that the proposed method obtains 

a higher accuracy.  

Also, the cascade network allows to reach high 

accuracies by ensuring a lower MCU workload. 
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