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Abstract: Graph-like modeling languages (GLML) are deployed in various domains. In model-based software 
engineering they are used directly or indirectly for the development of software. In different engineering 
systems, graph-like models are artifacts (circuit diagrams, energy flow diagrams) of the respective domain, 
which serve as input for downstream specialized applications (simulators, optimizers). When developing 
modeling tools, the concrete syntax of a language for creating, editing, and understanding models is 
immensely important. In order to develop tools with good usability, layout algorithms for the used languages 
have to be integrated. The development of these layout algorithms is particularly complex. With graph 
drawing there is a specialized field that deals with the development of layout algorithms for graphs. Some of 
these algorithms can be used for the layout of GLML or be adapted for GLML. In order to allow the reuse of 
layout algorithms and their assignment to a certain class of GLML, a classification scheme for the concrete 
syntax for GLML is presented in this paper. 

1 INTRODUCTION 

Abstract models and modeling languages are used in 
software engineering and classical engineering 
sciences to describe systems. Graph-like languages 
were introduced as suitable modeling tools as early as 
the turn of the 20th century. Many inventions in the 
field of electricity were published in patent 
specifications using graph-like visualizations e.g., 
(Tesla, 1901). The prevalence of computer 
technology and especially the propagation of model-
based design (MBD) have increasingly led to the rise 
of GLML in the sciences.  

The concrete syntax of a language is of utmost 
importance for the understanding of the language 
(Karsai et al., 2009). In this context, the 
comprehensibility of modeling languages strongly 
depends on the modeling skills of the users. The users 
deploying model based software development 
(MBSD) are typically software engineers with 
experience in abstract languages (e.g., programming 
languages) and general purpose modeling languages 
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(GPML) like UML. In model based engineering 
(MBE) the users are often classical engineers with 
little modeling experience. They are supported by 
domain-specific languages (DSL).  

Another important aspect is the usage of the 
created models. Applications that only need a single 
model to be generated do not have high demands on 
the usability of the modeling process. But when 
models are created and edited frequently, the 
modeling itself becomes an important part of the 
user’s work. This is then linked to high demands 
regarding usability, comparable to the demands of 
UI/UX design.  

To meet these requirements, modeling tools have 
to offer algorithms both for drawing of and 
interacting with the GLML. 

The layout of GLML is complex compared to the 
concrete syntax of textual languages. Although graph 
drawing is the specialized field that is concerned with 
the visualization of graphs, it has not systematically 
been applied in MBD yet (Binucci et al., 2019). There 
are two reasons for this. On the one hand, the 
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automatic drawing of graphs is less important than the 
implementation of layout algorithms and interaction 
methods that support the creating and editing of 
models. Here aspects such as dynamic graph drawing 
and layout stability are more important than static 
graph drawing. On the other hand, graphical models 
within the scope of MBD are structurally very varied. 
They differ from the classic, simple graph model 
consisting of vertices and edges. Graph models in 
MBD can be port graphs, hyper graphs, nested 
graphs, and labeled graphs. In this paper, these 
models are encapsulated in the term graph-like. 

The multitude of different graph models, which 
are often defined in the concrete syntax of the 
metamodels for GLML, and the different use cases 
for layout procedures complicate their reuse and 
adaptation considerably. Reuse and compatibility (of 
languages) are two of the TOP 10 challenges faced in 
MDE artifact sharing (Damasceno and Strüber, 
2021). Typical artifacts in MDE include models, 
metamodels, model transformations, and modeling 
tools.  In addition, for widely used languages, 
especially GPML, the concrete syntax is defined only 
very superficially, even though it should be an 
important part of the language. For UML 2.5.1, the 
specification takes up just 20 of 754 pages of 
documentation (OMG UML 2.5.1). A major 
shortcoming is that for many languages there is de-
facto no sufficient definition of the concrete syntax to 
provide state-of-the-art layout algorithms. 

This paper presents a classification scheme for the 
concrete syntax of GLML. This provides the 
possibility to assign layout algorithms not to a 
specific language or tool, but to a class of modeling 
languages according to the classification scheme. A 
classifier provides developers with the ability to more 
effectively use existing layout procedures, which may 
be grouped in libraries (e.g. the Eclipse Layout 
Kernel (Eclipse Foundation, 2021)), for the layouting 
of GLML. In particular, if layout procedures can be 
used via parameters for the layout of different 
concrete syntaxes, classifiers enable the mapping 
between GLML and layout procedures. This 
facilitates the reuse and adaptation of layout 
algorithms and greatly simplifies tool development. 

The proposed classification scheme does not 
claim to be exhaustive. It will be continuously 
extended in further work. 

Chapter 2 of the paper presents a metamodel for 
GLML. The metamodel describes the essential model 
elements, for which features are listed in the 

 
1  In the metamodel in Figure 1, edges must always be 

connected to ports. To use this metamodel to represent a 
graph model without ports, each node is assigned exactly 

classification scheme. In chapter 3, the classification 
scheme is detailed. Using the examples of the 
classical graph model, a GPML, and a DSL, Chapter 
4 applies the classification scheme and assigns 
corresponding layout algorithms. Chapter 5 describes 
the state of the art and Chapter 6 gives a short outlook 
on further work. 

2 FEATURES AND METAMODEL 
OF GLML 

Figure 1 shows a possible metamodel for GLML. The 
essential model elements are nodes, ports, edges, 
labels, and symbols. Nodes, ports and edges have a 
graphical expression (symbol) and thus reflect 
domain-specific semantics. This makes the model 
elements distinguishable and recognizable. The 
symbols are irrelevant for layout procedures and are 
not part of the classification scheme.  

Figure 1: A metamodel for GLML. 

Compared to the "classical" graph model, GLML 
differ in particular in that the edges do not directly 
connect the nodes and the connection is made via 
ports that are located on the nodes.1 

Ports for connecting nodes are used in many 
graphical languages. On the one hand, ports can be 
specified explicitly, and they can have a graphical or 
textual form, for example with fixed ports in ladder 
diagrams and function block diagrams in IEC 61131-
3. On the other hand, ports can also be used to specify 
connection positions of edges to nodes. These ports 
can have no expression and would then not be 
recognized as such in the graphical representation.  

Nodes are nested in some graphical modeling 
languages. They in turn contain nodes and edges and 
can also be connected to them via edges (e.g., UML 
activity diagrams). 

The main classification features for edges are the 
number of possible edge connections, specifications 

one port that has no symbol and is located in the center of 
the node. 
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for routing of the edges (straight or orthogonal), and 
the distinction between directed and undirected 
edges. On the one hand, hyperedges can be used to 
visualize the real properties of technical networks, 
e.g., power grids, and thus to better understand them 
(Wrobel et al., 2021). On the other hand, hyperedges 
increase the clarity of, e.g., UML diagrams (Purchase 
et al., 2001). A language where edges can only be 
associated with one port is, e.g., IDEF0 (Menzel and 
Mayer, 2006; IDEF, 2021).2 

Labels describe the other elements in more detail 
and make them distinguishable and recognizable. 
Ports must be distinguished from each other, e.g. to 
ensure that they are connected to valid edges (e.g., in 
circuit diagrams according to EN 60617-2). 

3 CLASSIFICATION SCHEME 

Chapter 3 provides a classification scheme for 
GLML. The first subchapter introduces the notation 
of the scheme and the following subchapters describe 
the classifiers for nodes, ports and edges of GLML.  

3.1 Notation 

The notation of the classification scheme is based on 
a classification for assembly line balancing problems 
(Boysen et al., 2007) 3 . The concrete syntax of a 
GLML is described by a 3-tuple ሺ𝜶|𝜷|𝜸ሻ, where α, β, 
and γ are vectors. The vectors 

describe the classificators for vertices (α), ports (β), 
and edges (γ). The description of the classifiers is in 
terms of vectors, because GLML can have different 
vertex types (αi), port types (βj), and edge types (γk).  

Each type is described by a set of classifiers, so 
that: 

 1 2 3 4, , ,i i i i i      for each vertex type,  

 
2  Using the metamodel from Figure 1 to visually represent 

edges connected only by a port, a symbolless pseudo node 
with a symbolless port must be created.  

3  A communality between assembly line balancing 
problems and the layouting of GLML is that although 
there is a family of related tasks, the concrete use cases of 
these tasks differ concerning parameters and constraints. 

 1 2 3 4 5, , , ,j j j j j j       for each port type, and 

 1 2 3 4, , ,k k k k k      for each edge type. 

To keep the classifiers as short as possible, default 
classifiers are marked with the symbol ο in the 
classification scheme, as in (Boysen et al., 2007). 
These can be omitted when using the classifiers. 

An asterisk (∗ ) after a classifier means that a 
subset (without ο) of the specified classifiers is used 
for classification; without the ∗, exactly one classifier 
applies.  

All classifiers are unique so that their feature 
assignment can be omitted. 

3.2 Vertex Classification 

Nesting Restriction  1 ,i inested   
1
i   Non-nested vertices. 
1 i inested  Nested vertices. 

Orientation Restriction  2 , , a
i i irot ref       

2
i   No rotation or mirroring allowed. 
2
i irot   Rotation of the vertex by degree φ:4 

 φ= ο; no rotation (φ=0°), 
 φ; rotation to the horizontal. 

2 a
i iref   Mirroring of the vertex allowed: 

 a = h; horizontal mirroring  
  allowed, 

 a = v; vertical mirroring allowed, 
a = hv; horizontal and vertical 
mirroring allowed. 

Label Position  3 , _ , _i i il free l ref      
3
i   No vertex label. 
3 _i il free   Arbitrary placement of labels. 
3 _i l ref   Placement of labels is fixed. 

Label Orientation  4 , _ , _i i il rot l ref       
4
i   No rotation or mirroring allowed. 
4 _i il rot   Rotation of the label by degree φ: 

  φ= ο; no rotation (φ=0°), 
  φ; rotation to the horizontal. 

4 _i il ref   Mirroring of the label allowed.5 

As a result, many algorithms exist and it is difficult for 
developers to assign existing procedures to a concrete 
task (reuse). 

4  Angles are always assumed to be positive clockwise.   
5  This does not mean mirrored writing, but rather “readable 

from below/top“.  
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3.3 Port Classification 

Position Classification  1 , , ,d
j j j jfree side fixed   

1
j   No ports. As in the classical graph 

model, nodes are directly connected 
via edges. 

1
j jfree   Ports can be arbitrarily placed on the 

shape of a vertex. 
1 d
j jside   Ports can be assigned to specific sides 

of the vertex shape. Ports can then be 
freely placed on their assigned side. 
The sides are defined by the directions 

 , , ,d north south east west  , 

  d = north; top side, 
  d = south; bottom side, 
  d = east; right side, 
  d = west; left side. 

Ports can be assigned to multiple 
allowed sides by enumerating the 
directions (comma separated). 

1
j jfixed   Ports have a fixed position on the 

vertex shape. 

Connection Number  2 , q
j jn   

2
j   Exactly one edge allowed. 
2 q
j jn   Ports can connect to n edges. The 

qualifier q specifies: 
  m = ο; exact number, 
  m = max; maximum number, 
  m = min; minimum number. 

Port Direction  3 , ,j j jin out    
3
j   No port direction. 
3
j jin   Input port. 
3
j jout   Output port. 
3 d
j jcon   Connection port on nested vertices. 

The direction of the edges connected 
on this port is classified by: 

  d= ο; No port direction. 
d=in-out; Input port from outside and 
output port from inside. 

 
6  An extension of the classifier so that a fixed, maximum 

or minimum number of edge connections is specified is 
conceivable. However, the authors do not know of any 
graphical language that meets these criteria at this time. 

7  So-called k-linear maps (cf. Nickel and Nöllenburg 
(2019) occur mainly in transportation maps, and the 

d=out-in; Output port from outside and 
input port from inside. 

Label Position  4 , _ , _j j jl free l ref    
4
i   No port label. 
4 _i il free   Arbitrary placement of labels. 
4 _i l ref   Placement of labels is fixed. 

Label Orientation  5 , _ , _j j jl rot l ref    
5
i   No rotation or mirroring allowed. 
5 _j jl rot   Rotation of the label by degree φ: 

  φ= ο; no rotation (φ=0°). 
5 _j jl ref   Label can be mirrored. 

3.4 Edge Classification 

Structure  1 , ,m
k k khyper one    

1
k   Port to port connection. An edge is 

connected to exactly two ports. 
1 m
k khyper   An edge can connect to multiple ports. 

The multiplicity of ports is specified 
as m with  ,m 1toN .6 

  m = ο; m to n relation. 
  m = 1toN; 1 to n relation. 

A 1 to n relation implies, that the edge 
is directed ( 2

k kdir  ) and either 

source or sink are connected to a 
single port.  

1
k kone   Edge is connected to exactly one port. 

Routing  2 ,, , ,f
k k k kort k lin poly    

2
k   Straight routing without bends. 
2
k kort   Orthogonal routing, only horizontal or 

vertical line segments. 
2 ,f
k kk lin    Routing of line segments whose 

angles to each other have an integer 
multiple of 360°/2k, for example:7 

  f=2; orthogonal,8 
  f=3; hexalinear, 
  f=4; octolinear. 

The rotation angle of the routing 
relative to the horizontal is φ. 

octolinear routing  2 4

k kk lin   is the de-facto 
standard for such diagrams (cf. Wu et al. (2020)). 

8  2 2

k kort k lin    ; For orthogonal routing, a special 
classifier 2

k kort   is introduced to highlight one of the 
most widely used classifiers. 
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  φ=○; no rotation to the horizontal. 
  φ; rotation to the horizontal. 

2
k kpoly   Routing with Polylines. 
2
k karc   Routing with arcs. 

Label Position  3 , _ , _k k kl free l ref    
3
k   No edge label. 
3 _k kl free   Arbitrary placement of labels. 
3 _k l ref   Placement of labels is fixed. 

Label Orientation  4 , _ , _k k kl rot l ref    
4
k   No rotation or mirroring allowed. 
4 _k kl rot   Rotation of the label by degree φ: 

  φ=○; no rotation (φ=0°). 
4 _k kl ref    Label can be mirrored. 

4 EXAMPLES 

In this section, the classification scheme presented for 
the concrete syntax is applied to three examples, a 
simple graph model, the UML diagram from Figure 
1, and a DSL. For the second example, the description 
of the classification is more detailed. 

4.1 Simple Graph Model 

For the simple graph model consisting of nodes, 
(undirected) edges, and no labels, the classification 
tuple is  | |    or  | |  for short. 

Figure 2 shows the famous Königsberg bridge 
problem (Euler, 1735): The vertices A, B, C, and D 
represent the disctricts and the edges represent the 
seven bridges of Königsberg, drawn as a graph 
according to the classification ( | | ). 
 

 
 

 

 

 

 

Figure 2: Graph model of the Königsberg bridge problem. 

4.2 UML Class Diagram 

The UML is very vague in defining the concrete 
syntax for diagrams. Tool developers are tasked with 

defining a concrete syntax for diagrams and 
implementing it in software tools via layout 
algorithms. The UML class diagram in Figure 1 will 
be used as an example with the following concrete 
syntax: 

1. Classes should be arranged in such a way that 
the inheritance hierarchy is taken into account.   

2. Hyperedges are to be used for the inheritance 
relationships. 

3. All edges must be routed orthogonally. 
4. The ports for the inheritance relationship must 

be arranged in such a way that the ports on the 
base classes are placed on the lower outer 
border and the ports for the derived classes are 
placed on the upper outer border of vertices. 

5. All other ports can be placed freely. 
6. Ports of aggregation and association relations 

have labels (describing the multiplicities). 
7. All ports are supposed to be evenly distributed 

on the outer contour of a node. 
This results in the following classifier of vertices, 

ports and edges for the UML diagram in Figure 1: 
 
Vertices: Because the example UML class diagram 
has only one type of vertex (class), the default 
features apply, so that  . 
Ports can be separated into 5 types: 

1. Ports of the base classes to which the edges for 
the inheritance relation are connected have the 

following classifier:  1 1 1;southside in  . 

2. Ports of the derived classes to which the edges 
for the inheritance relation are connected have 

the following classifier:  2 2 2;northside out  . 

3. Ports of the owning classes to which edges for 
the aggregation relation are connected have 
the classifier:  3 3 3 3; ; _free in l free  . 

4. Ports of the not owning classes to which edges 
for the aggregation relation are connected 
have the classifier: 

 4 4 4 4_; ;free out l free  . 

5. Ports for association relations are classified 
with  5 5 5; _free l free  . 

Edges can be separated into 3 types: 
1. Edges for inheritance relations are orthogonal 

hyperedges. Their classifier is

 ;1toN
1 1 1hyper ort  . 

2. Edges for aggregation relations are port-to-
port connections to be routed orthogonally. 
Their classifier is  2 2ort  . 
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3. Edges for association relations have the same 
classifier as aggregation relations: 

 3 3ort  . 

This results in the following classification of the 
concrete syntax for the UML diagram in Figure 1: 

This classification for a concrete syntax for UML 
class diagrams can be used to develop suitable layout 
algorithms or to reuse or adapt existing algorithms. 
For example, a static automatic layout for this 
graphical language is provided in (Eiglsperger, 2003), 
whereas (Helmke et al., 2021) provide dynamic 
layout support for orthogonally routed hyperedges 

 ;1toNhyper ort  with topological stability.  

4.3 Parameter Map of CAD-Model 

The third example is the concrete syntax of a DSL. 
The model in Figure 3 represents the parametric 
relationships of a 3D-CAD model of a deep drawing 
tool. The vertices represent the elements of the CAD 
model and their hierarchical structure. Identical 
model components are represented by a thick 
connection (e.g., the green connection between the 
occurrences of “punch assembly” in Figure 3). The 
central vertex of the parameter map represents a 
specific parametric relationship (here a formula) 
between input variables (top) and output variables 
(bottom) (Scheffler et al., 2016). 

Figure 3: Parameter map of a parametric 3D-CAD model 
for deep drawing tools (Scheffler et al., 2016). 

The concrete syntax of the DSL can be described 
by the following classifier: 

All vertices have the default properties of the 
classifier.  

There are three types of ports. One type for the 
identity relationship (index 1) with fixed positions 
and two types for the input ports (index 2) and for the 
output ports (index 3) to connect directed edges 
between parameter nodes and formula.  

In accord with the definition of ports, there are 
two types of edges. The edges that map the identity 

relationship have the default properties 1 1  . The 

edges between parameter nodes and formula nodes 
are directed hyperedges that are routed orthogonally:

 ;1toN
2 2 2hyper ort  . 

5 RELATED WORK 

The concrete syntax of a modeling language is the 
interface to the modeler. It is thus important for the 
usability of the language (Karsai et al., 2009), and 
building editors is a particular challenge for 
developers (Völter et al., 2013). Their proximity to 
graphs and the requirements to develop layout 
algorithms for languages suggest a consideration of 
graph-drawing. 

Graph-drawing methods exist for different classes 
of graphs. In (Di Battista et al., 1999) a general 
framework for graph drawing is presented, which 
contains parts of the features of the presented 
classification scheme (e.g., port/edge direction 3

and routing classification 3 ). However, the 

framework is strongly focused on concrete layout 
aspects (planarity) and properties of graphs 
(connectivity). Ports, nested graphs, hypergraphs, and 
labeling are not included in this framework. 

For port graphs, an important feature, the port 
position 2 , is classified as part of the development 

of layout methods (Schulze et al., 2014). 
Problems of labeling were researched intensively 

in the environment of geographic maps. In (Poon et 
al., 2004) a model with 9 different possibilities for the 
placement of axis-parallel enveloping label 
rectangles is presented. An overview of publications 
on map labeling is provided by (Wolff, 2009).  

Label orientation is also a relevant and widely 
researched topic in traffic maps. An overview of 
existing work is provided by (Wu et al., 2020). 
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Graph drawing represents only one side of the 
related work: the possible layout procedures for 
graphical languages to be used in graphical editors. 
Originating from model driven development (MDD), 
so-called language workbenches are also to be 
considered. In language workbenches, the abstract 
and the concrete syntax as well as the mapping 
between them is defined as a metamodel (MetaEdit+, 
2021; Microsoft DSL, 2021, 2021; OBEO, 2021; 
Sirius, 2021; GMF, 2021) and graphical editors for 
DSLs are generated from it. This is where the 
challenges arise regarding the development of 
suitable layout algorithms, which are currently not 
always well solved for practical applications (Cooper 
et al., 2021).  

Furthermore, there are some languages, especially 
technical languages, for which the concrete syntax is 
very precisely defined. These are mainly established 
modeling languages from engineering science. Their 
concrete syntax is more precisely specified, e.g., in 
the form of a standard (USAS Y14.15-1966; IDEF, 
2021). 

The presented classification scheme distinguishes 
nodes, ports, edges, labels, and symbols as the most 
important model elements. These model elements are 
explicitly included in several metamodels (Pleßow 
and Simeonov, 1989; Wrobel et al., 2007; Barzdins 
and Kalnins, 2016; Eclipse Foundation, 2021), but the 
authors are not aware of any classification scheme for 
the concrete syntax of GLML. 

6 CONCLUSION AND FURTHER 
WORK 

Layout is an important component of the usability of 
a GLML. Good layout algorithms enable even users 
with limited modeling experience to build, modify, 
and understand complex models. GLML appear in the 
form of both GPML and DSL. They are important 
artifacts in MBD tools and technical engineering 
tools. For graphs, there are very many layout methods 
that have been adapted for GLML, especially for 
static drawings. The large variety of structurally 
different GLML makes the development, reuse, and 
adaptation of graph drawing algorithms very costly 
for tool developers. In modeling tools, dynamic 
layout algorithms are of greater importance compared 
to static layout algorithms, although their 
development is underrepresented in graph drawing. 

 
9  The DSL in the example of chapter 4.3 is a GLML that 

is automatically generated to show relations inside a 3D-
CAD model. 

With the developed approach for the classification 
of concrete syntax, the presented classification 
scheme offers the possibility to better relate GLML 
and layout methods. This facilitates tool development 
for MDD. It is an important contribution to the reuse 
of layout algorithms and intra-language compatibility 
of GLML, one of the current challenges in MDE. 

The presented classification will be continuously 
extended in further work. Aspects of automatic node 
placement, for which there are a number of classical 
static graph drawing methods and adaptations for 
GLML, are currently not present in the classifier. In 
particular, for GLML where model visualization 
rather than model building is the focus of a tool,9 the 
inclusion of placement can be valuable.   

Furthermore, model-to-model transformations 
between GLML with distinct classifiers are to be 
investigated. With the help of these model-to-model 
transformations, layout methods of another class can 
be reused for a GLML. Further possible next steps 
would be to classify existing languages (e.g., GPML) 
and layout methods according to the presented 
features in order to facilitate mutual mapping. 
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