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Abstract: Transfer of cell type labels as part of the comprehensive integration of multiple single nucleus RNA 
sequencing (snRNAseq) datasets offers a powerful tool for comparing cell populations and their activation 
states in normal versus disease conditions. Another potential use for these methods is annotation alignments 
between samples from different anatomic areas. This study describes and evaluates an integration analysis 
applied for profiling of oligodendrocyte lineage nuclei sequenced from human brain putamen region tissue 
samples for healthy Control (n = 3), Parkinson’s Disease (PD; n = 3) and Multiple System Atrophy (MSA; n 
= 3) subjects with label transfer to substantia nigra region tissue samples for healthy Control (n = 5) subjects. 
PD and MSA are both synucleinopathies, progressive neurodegenerative disorders characterized by nervous 
system aggregates of α-synuclein, a protein encoded by the SNCA gene. Histologic findings and genetic 
evidence suggest links between oligodendrocyte biology and synucleinopathy pathogenesis. In this work, we 
first identify disease-associated changes among transcriptionally distinct oligodendrocyte subpopulations in 
putamen. We then apply label transfer methods to generalize our findings from putamen to substantia nigra, 
a brain region characteristically impacted in PD and variably affected in MSA. Interestingly, our analysis 
predicts oligodendrocytes in substantia nigra include a significantly greater proportion of an oligodendrocyte 
subpopulation identified in putamen as most highly overexpressing SNCA in PD. Our results provide new 
insights into oligodendrocyte biology in PD and MSA and our workflow provides an example of label transfer 
methods applied for cross-dataset exploratory purpose. 

1 INTRODUCTION 

Synucleinopathies are a group of progressive 
neurodegenerative disorders characterized by 
nervous system aggregates of α-synuclein protein 
(Coon, Cutsforth-Gregory & Benarroch, 2018). PD is 
the most common synucleinopathy and the second 
most common chronic neurodegenerative disorder, 
affecting 1% of the population over age 60 (Tysnes & 
Storstein, 2017). MSA occurs at a much lower 
frequency than PD and has an estimated incidence 
rate of 0.6 per 100,000 people (Vanacore, Bonifati, 
Fabbrini, et al., 2001). Intracellular inclusions of α-
synuclein are observed on post-mortem microscopic 
exam of central nervous system tissue (CNS) in both 
PD and MSA, but the cellular location of α-synuclein 
and patterns of CNS involvement differ between the 
disorders. In PD, α-synuclein aggregates are observed 

mainly as neuronal intracellular collections (Lewy 
bodies) (Spillantini, Schmidt, Lee, et al., 1997). In 
MSA, in contrast, α-synuclein aggregates occur most 
frequently as oligodendroglial cytoplasmic inclusions 
(Inoue, Yagishita, Ryo, et al.,1997; Hague, Lento, 
Morgello, et al. 1997). Death of neurons in the 
substantia nigra pars compacta is particularly 
characteristic of PD, with lesion involvement 
progressing from the brainstem and midbrain to the 
neocortex observed over the course of the disease 
(Del Tredici & Braak, 2016). While striatonigral 
degeneration occurs to varying degrees in MSA, 
concurrent and more variable involvement of the 
cerebellum and autonomic nervous system are further 
clinical features in MSA (Inoue et al., 1997; Hague, 
et al., 1997).  

SNCA is the gene encoding α-synuclein, a 140 
amino acid protein known to participate in vesicle 
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exocytosis, endocytosis, and neurotransmitter vesicle 
cycling (Maroteaux, Campanelli, & Scheller, 1988). 
Studies have also localized this protein to the cell 
nucleus, where direct interaction with DNA and 
histone proteins (Pinho, Paiva, Jercic, et al., 2019) 
and modulation of DNA damage responses (Goers, 
Manning-Bog, McCormack, et al. 2003) have been 
reported. The complete spectrum of α-synuclein 
activities and how this protein may contribute to the 
development and progression of each of the 
synucleinopathies are not fully understood.  

Genome-wide association studies (GWAS) and 
transcriptomic profiling of human brain tissue have 
highlighted potential roles for glial cells in the 
synucleinopathies, with particularly strong evidence 
implicating oligodendrocyte biology in PD (Bryois, 
Skene, Hansen, et al., 2020; Smajic, Prada-Medina, 
Landoulis, et al., 2020; Nalls, Blauwendraat, 
Vallerga, et al., 2019; Reynolds, Botia, Nalls, et al., 
2019). Inadequate metabolic support for neurons, 
overactive stress and inflammatory response 
signaling, and dysfunctional autophagy have been 
suggested as mechanisms by which oligodendrocytes 
might contribute to PD development (Teeple, Jindal, 
Kiragasi, Annaldasula, et al., 2020; Bryois, et al., 
2020; Reynolds, et al., 2019). Oligodendrocyte-
specific differentially expressed genes have also been 
linked with variants significantly associated with PD 
risk by GWAS in analyses of snRNAseq data from 
healthy human donor substantia nigra tissues 
(Agarwal, Sando, Volpato, et al.,2020) and mouse 
nervous system single-cell data (Bryois, et al., 2020). 
The present analysis was undertaken in order to 
further profile the relationship between midbrain 
oligodendrocyte population heterogeneity and α-
synuclein biology as part of a comprehensive analysis 
of PD and MSA snRNAseq data with label transfer 
methodologies found in this analysis to reveal new 
insights (Teeple, Joshi, Pande, Huang, et al., 2021).  

1.1 Related Work 

The development and ongoing refinement of single 
nucleus RNA sequencing (snRNAseq) techniques 
have greatly advanced our ability to understand the 
heterogeneity and functional activities of cell 
populations in the brain and nervous system. Cells are 
the basic unit of the multicellular organism, but 
although cells in the brain share DNA, each differs in 
its transcriptional activities, epigenetic modifications, 
and functions in and responses to its 
microenvironment (Duran, Wei, & Wu, 2017). 
Neuronal cells in the brain form densely 
interconnected, diversified networks where structure 

and cell functional activation states support and 
coordinate dynamic and complex processes, for 
example memory encoding, vision, and motor 
coordination. Non-neuronal cell populations 
intermixed in these cellular networks support 
neuronal metabolism, facilitate signal transmission, 
and modulate vascular flow and immune responses, 
among many other activities (Duran et al., 2017). 

Sequencing of nuclei in a tissue sample yields a 
unique molecular identified (UMI) count matrix. This 
matrix includes integer counts of the number of RNA 
molecules for each feature (gene) identified in each 
nucleus (one nucleus per cell). In the analysis of 
snRNAseq data, variations in gene counts between 
nuclei are used both to cluster cell types (by similar 
patterns of gene expression in nuclei) as well as for 
differential expression analysis where different cell 
groups are compared with respect to their mean 
expression of different genes. Pre-processing of 
snRNAseq data includes initial filtering of UMI data 
tables to remove low quality rows (ie those nuclei 
with few counts or very many, which likely represent 
data for empty droplets or multiplets, respectively) 
and cells with very high percentages of mitochondrial 
genes (Hao, Hao, Andersen-Nissen, et al., 2021). 
These filtering steps are undertaken to ensure high 
quality data are used for downstream analyses.        

Variations in sequencing depth may result in 
different numbers of molecules being detected in 
different cells. Normalization of UMI count matrices 
is therefore performed to address this technical 
variability as a preprocessing step. Options for 
normalization include log normalization of gene 
expression measurements for each cell followed by 
scale factor multiplication (Hao et al. 2021) as well as 
an alternative method, sctransform, which takes 
sequencing depth as a covariate in a generalized 
linear model and yields the residuals of a regularized 
negative binomial regression for use as effectively 
normalized data (Hafemeister & Satija, 2019). The 
sctransform modelling framework has been proposed 
as a method by which to remove technical 
characteristics from data while preserving cell-to-cell 
biological heterogeneity. 

In addition to technical effects, joint analysis of 
multiple samples presents further challenges, as this 
requires matching cell subpopulations across 
datasets. Stuart et al. 2019 have proposed and 
implemented a comprehensive strategy for 
integration of single cell datasets (Stuart, Butler, 
Hoffman, et al., 2019). Applying concepts from 
statistical learning, their approach combines single 
cell datasets through the application of canonical 
correlation analysis (CCA) and mutual nearest 
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neighbors profiling for the task of identifying 
‘anchors’, pairwise correspondences of cell states 
between datasets. These anchor correspondences, 
once identified, are then used to transform multiple 
UMI tables into a shared space for integrated 
comparisons -- also the transformation derived from 
creating an integrated reference can then be applied 
to other query datasets for aligned comparisons.         

Integrated reference datasets may be used to 
transfer predicted cell type labels to a query sample, 
efficiently labelling newly processed data. Another 
possible use for these methods, however, is 
exploration of research datasets to examine whether 
cell transcriptomic states identified in one dataset 
may resemble particular subpopulations in a query 
data set. Here, we present such an analysis, using an 
integrated reference constructed from Control, MSA, 
and PD putamen data with Control substantia nigra 
data as our query.  

1.2 Problem Formulation and Aims 

Clustering of integrated snRNAseq data is performed 
after filtering, normalization, and integration. The 
features (genes) in the integrated data with the highest 
cell to cell variation are used for clustering. PCA is 
performed on the subset of these highly variable 
genes for dimension reduction, followed by 
unsupervised clustering using optimization of a 
modularity function for different parameter settings 
to generate cluster solutions (Hao, et al., 2021). 
Seurat version 4, the software package used in this 
analysis, uses a graph-based clustering approach that 
includes selection of a resolution parameter based on 
stratification of cell-specific feature (gene 
expression) markers among identified clusters.  When 
working with a single integrated dataset, cluster 
identities can be assigned by feature differential 
expression comparisons, with subsets of genes whose 
expression is particular to certain clusters used for 
annotation of cell types. 

When clustering a single or integrated dataset, 
feature expression patterns selected by the above 
workflow for clustering (and the final cluster 
solutions themselves) will depend on sample 
composition. For example, analyzing an snRNAseq 
dataset with many neurons and few other glial cell 
types will result in the selection of highly variable 
genes which differ among neurons as the most highly 
variable features and clustering will likely separate 
more neuron subclusters than other types. Using such 
a neuron-predominant reference in a query dataset 
without many neurons would have limitations, in that 
the features selected for use in the transformation may 

 
Figure 1: Data analysis workflow schematic. 

not perform well for identifying non-neuronal cell 
subpopulation clusters. Thus, an issue to consider 
when using snRNAseq label transfer for exploratory 
research as presented here is whether cell type 
compositions may be similar. For profiling 
oligodendrocytes in substantia nigra using a putamen 
reference, then, a first step to be taken before 
examining the results of label transfer is to assess the 
generalizability of the reference to the query dataset. 
Therefore, we include in this workflow an annotation 
of nuclei population types for both putamen and 
substantia nigra to first confirm that oligodendrocyte 
nuclei are being broadly correctly identified by label 
transfer predictions. We then explore the results of 
label transfer among oligodendrocyte subpopulations 
as the next stage of the analysis. 

2 METHODS AND PROCEDURES 

Post-mortem fresh-frozen unfixed human putamen 
samples were each obtained through partnerships 
with licensed organizations with completed pre-
mortem consent for donation and ethical committee 
approval for sample acquisition and use (Teeple et al, 
2021). Samples used for single-nucleus RNA 
sequencing (snRNA-seq) were putamen tissue 
sections  from  nine  human  donors  (n  =3  per  group,  
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Figure 2: Putamen sample nuclei integrated and clustered. 
Plots are UMAP of principle components coloured by 
cluster identity. Expression levels for type-specific markers 
are shown in violin plots by cluster. 

mean age in years ± SD: Control, 78.7 ± 9.5; PD, 79.7 
± 5.5; MSA, 65.0 ± 10.6).  

Nuclei Isolation: Samples were stored at -80°C. For 
tissue lysis and washing of nuclei, tissue sections 
were added to 1 mL lysis buffer (Nuclei PURE lysis 
buffer, Sigma) and thawed on ice. Samples were then 
Dounce homogenized with PestleAx20 and 
PestleBx20 before transfer to a new tube, with the 
addition of additional lysis buffer. Following 
incubation on ice for 15 minutes, samples were then 
filtered using a 30 mM MACS strainer (MACS 
strainer, Fisher Scientific), centrifuged at 500xg for 5 
minutes at 4°C using a swinging bucket rotor (Sorvall 
Legend RT, Thermo Fisher), and then pellets were 
washed with an additional 1 mL cold lysis buffer and 
incubated on ice for an additional 5 minutes. Samples 
were then centrifugated at 500g for 5 minutes at 4°C 
and then were resuspended in 1mL Nuclei PURE 
Storage Buffer (Nuclei PURE storage buffer, Sigma). 
Sample washing was performed until the supernatant 

cleared. A final resuspension was then prepared in 
0.6mL wash buffer before NeuN/Dapi staining and 
FACS sorting was performed. For NeuN/Dapi and 
FACS sorting, from 0.6 mL nuclei sample, 540 mL, 
30 mL, and 30 mL were aliquoted into tubes for 
sample and controls and then 10X Dapi/NeuN buffer 
was added to tubes for a final 1X concentration. 
Tubes were then incubated on ice for 30 minutes, with 
inversion every 10 min. Following incubation, 
samples were spun at 500xg for 5 min, supernatant 
removed, and samples were resuspended in 600 ul 
Wash buffer for samples (300 ul for control tubes). 
Nuclei then underwent filtering and sorting using BD 
Bioscience InFlux Cell Sorter.  

Library Preparation and NovaSeq Sequencing: 
Libraries were prepared according to 10xGenomics 
protocol for Chromium Single Cell 3’ Gene 
Expression V3 kit. NovaSeq sequencing was 
performed according to illumine NovaSeq 6000 
protocol. UMI count matrices generated by 
Cellranger V3.0.2.  

2.1 Sample Integration and Annotation 

A workflow schematic for data integration and 
analysis steps for putamen and substantia nigra 
samples in shown in Fig. 1.  

Putamen: Summary information for final UMI count 
matrices for nuclei by individual samples together 
with nucleus barcodes and gene labels were loaded  
with R version 4.0.0/RStudio for sample integration 
and unsupervised clustering using Seurat Package 
version 4.0.1. For Quality Control (QC), nuclei were 
filtered following standard protocols based on 
examination of violin plots. Cutoffs 200 < 
nFeature_RNA < 9000 and percent.mt < 5 were used. 
Filtered matrices were individually normalized by 
sample according to Seurat workflows for 
SCTransfom. After quality filtering, 87,086 total 
nuclei were included in the final dataset. Sample 
integration was performed using the R package Seurat 
using the FindIntegrationAnchors and IntegrateData 
functions for 3000 variable features. Clustering 
resolution 0.5 and 30 dimensions were used for the 
final clustering. Broad type annotations were 
assigned based on expression of canonical markers: 
oligodendrocyte precursor cell (OPC; VCAN), 
oligodendrocyte (OLIGO; MOG, MBP), neuron 
(NEUR; RBFOX3, SNAP25, GAD1, GAD2, 
NRGN), astrocyte (ASTRO; GFAP, AQP4, GJA1), 
microglia (MICRG; CSF1R), and vascular 
leptomeningeal  cells  (VLMC;  SLC6A13).  UMAP  
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Figure 3: Substantia nigra sample nuclei integrated and 
clustered. Plots are UMAP of principle components 
coloured by cluster identity. Expression levels for type-
specific markers are shown in violin plots by cluster. 

plots for cluster assignments together with violin 
plots for expression of broad types markers, and types 
annotations are shown in Fig. 2. 

Substantia Nigra: Data was downloaded from 
supplementary files from Agarwal et al. 2020 for 
substantia nigra samples (5943 nuclei) obtained from 
five human donors and sequenced using the 10x 
Genomics Chromium Platform (Agarwal, et al., 
2020). These files are accessible online through the 
NCBI interface: https://www.ncbi.nlm.nih.gov/geo/ 
query/acc.cgi?acc=GSE140231. Integration and 
broad cell type annotations were performed for 
Substantia Nigra data separately in R using the Seurat 
package, version 4.0.1. A similar workflow as for 
putamen samples was followed. Pre-processing cut-
offs were selected based on initial QC plots: 200< 
nFeatureRNA < 7500 and percent.mt<5. Data were 
normalized at the individual sample level using 
SCTransform and then integrated using 
FindIntegrationAnchors and IntegrateData as 

described in the Seurat data integration workflow 
with 3000 variable features and cluster resolution 0.5. 
The number of PCs used for clustering (n = 30) was 
chosen to optimize separation between clusters. 
Broad cell types were assigned for each cluster based 
on marker expression levels as for putamen (Fig. 3).  

2.2 Differential Gene Expression 

Differentially expressed genes for PD versus Control 
and MSA versus Control were identified within each 
cluster using the Seurat FindMarkers() function and 
the MAST package (Finak, McDaid, Yajima, et al., 
2015) for differential gene expression analysis 
comparisons. Pathway enrichment analysis for 
differentially expressed genes was performed using 
Qiagen Ingenuity Pathway Analysis (IPA) software 
(Kramer, Green, Pollard, & Tugendreich, 2014) using 
adjusted p-value<0.05 and abs(log2 fold change) 
cutoff 0.35. For identification of cluster marker 
genes, FindMarkers was used with the MAST 
package for the comparison of the selected cluster 
versus all other nuclei. Functional enrichments for 
markers were queried using the Enrichr platform 
(Xie, Bailey, Kuleshov, et al., 2021). 

Table 1: Broad Cell Types Proportions. 

 
Cell Type 

 
Tissue Source -   

Condition 

Mean 
Proportion ± 

Standard 
Deviation

Oligodendrocyte Putamen - Control 
Putamen – PD 

Putamen - MSA 
Subst. Nigra - Control 

66.5±14.3 
64.2±24.5 
64.6±13.2 
63.8±16.9

Neuron Putamen - Control 
Putamen – PD 

Putamen - MSA 
Subst. Nigra - Control 

14.5±6.6 
13.9±14.8 
18.7±12.1 

5.5±5.5
Astrocyte Putamen - Control 

Putamen – PD 
Putamen - MSA 

Subst. Nigra - Control 

9.4±5.9 
12.6±7.4 
7.4±1.4 

16.0±8.6
Microglia Putamen - Control 

Putamen – PD 
Putamen - MSA 

Subst. Nigra - Control 

4.1±0.8 
6.3±2.1 
4.8±1.2 
5.4±3.7

OPC Putamen - Control 
Putamen – PD 

Putamen - MSA 
Subst. Nigra - Control 

5.1±1.6 
2.4±0.3 
3.8±1.5 
8.4±4.5

VLMC Putamen - Control 
Putamen – PD 

Putamen - MSA 
Subst. Nigra - Control 

0.4±0.4 
0.7±0.5 
0.7±0.5 
0.9±0.4
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2.3 Label Transfer 

Label transfer was performed in Seurat using the 
FindTransferAnchors and TransferData functions to 
predict substantia nigra nuclei type for broad cell 
types and subpopulation clusters as identified in 
putamen reference samples. Accuracy of broad types 
classifications was calculated using annotations made 
for the substantia nigra dataset as ground truth. To 
examine which cluster markers identify 
oligodendrocytes in the 4-OLIGO subcluster, the 
function FindMarkers, using MAST for differential 
expression testing, was applied for cluster 4-OLIGO 
in Control putamen samples and for nuclei predicted 
to belong to 4-OLIGO in Control substantia nigra in 
comparison to all other sample nuclei. 

3 RESULTS 

3.1 Broad Cell Types  

After quality filtering, nuclei from human putamen 
tissue samples included Control (n = 3 donors; 22,297  
nuclei), PD (n = 3 donors; 32,301 nuclei), and MSA 
(n = 3 donors; 32,488 nuclei). Data for nuclei from 
substantia nigra were Control (n = 5 donors; 6,018 
nuclei). For both putamen and substantia nigra 
samples, oligodendrocytes were found to be the 
dominant cell type. Table 1 presents a summary of 
broad cell types proportions for each tissue type and 
condition. 

3.2 Oligodendrocytes in Putamen  

Unsupervised clustering of integrated putamen 
sample data identified eight oligodendrocyte clusters 
from their transcriptomic features. Pathway 
enrichment analysis for differentially expressed 
genes in PD versus Control oligodendrocyte nuclei 
and MSA versus Control oligodendrocyte nuclei 
revealed differences in gene expression changes 
between PD and MSA. In IPA comparison pathway 
enrichment analysis, more prominent differences in 
expression of genes linked with unfolded protein 
responses and stress signalling were observed in PD 
oligodendrocytes (Fig. 4). SNCA expression among 
cell clusters was also compared, revealing 
oligodendrocyte clusters 4-OLIGO and 5-OLIGO as 
subpopulations with the most pronounced increases 
in SNCA expression in PD while this expression 
pattern was absent in MSA and in Control 
oligodendrocytes (Fig. 5). 
 

 
Figure 4: Pathway enrichments for oligodendrocyte nuclei 
differentially expressed genes. (grey dot: p-adj>0.05). 

3.3 Predicted Cell Types 

Using profiled putamen nuclei as a reference, the 
accuracy of oligodendrocyte nuclei classification by 
label transfer for substantia nigra oligodendrocytes 
was 98%. A summary of accuracy across all cell types 
is shown in Fig. 6. Prediction of oligodendrocyte 
subtypes  was  then  performed,  which  was  found to  

 
Figure 5: Comparative proportions and average expression 
of SNCA in oligodendrocyte lineage clusters. 
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Figure 6: Prediction of broad cell types from putamen 
reference and confusion matrix with class accuracies. 

identify a greater than expected number of 
oligodendrocytes as the 4-OLIGO type. Predicted 
subpopulations are identified in label transfer based 
on similarities in gene expression patterns, and these 
gene expression patterns may be functionally 
annotated by gene set enrichment analysis relative to 
pathway and function annotation references. Marker 
genes are genes differentially expressed within a 
cluster relative to alll other nuclei. We compared 
cluster markers for 4-OLIGO nuclei in putamen with 
marker genes for the predicted 4-OLIGO subcluster 
of substantia nigra. Remarkably, 302 genes were 
identified as shared markers for both the 4-OLIGO 
cluster in putamen and the predicted 4-OLIGO nuclei 
in substantia nigra. Functional enrichments for the 
putamen 4-OLIGO gene set and the common gene 
markers for predicted cluster nuclei are shown in Fig. 
7. Prominent among these enriched pathways and 
functions are microtubule binding and folding. 
 
 
 
 
 
 

 

 

 
Figure 7: Predictions shown in UMAP project and predicted 
nuclei population proportions. Overlap of markers for 4-
OLIGO cluster and functional enrichments. 
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4 CONCLUSIONS 

Recent methods developed for single cell and single 
nucleus sequencing have enabled more 
comprehensive studies and profiling of 
oligodendrocytes in different brain diseases (Agarwal 
et al., 2020; Smajic, et al., 2020; Jakel, Agirre, Falcao, 
et al., 2019) as well provided new avenues for 
exploratory and comparative analyses. In this study, 
we apply label transfer methods to generalize our 
disease versus control putamen region comparisons to 
another brain region to newly identify an expanded 
subpopulation of transcriptionally similar nuclei in 
substantia nigra. While we observe a greater 
predicted proportion of an oligodendrocyte subtype in 
substantia nigra which is identified as overexpressing 
SNCA in PD in putamen, it remains to be further 
understood how functional activities in 
oligodendrocyte subpopulations relate to α-synuclein 
biology and synucleinopathy disease processes.   

Oligodendroglial cytoplasmic inclusions of α -
synuclein protein are described as the predominant 
neuropathological finding in MSA; neuronal α -
synuclein aggregates are described as being more 
prominent in PD, although varying degrees of 
neuronal and oligodendroglial involvement are 
reported in both disorders (Jellinger, 2018; 
Henderson, Trojanowski, & Lee, 2019.  Gillman, 
Wenning, Low, et al., 2008). SNCA mutations, 
duplications, and triplications have been causally 
linked with familial PD in multiple studies (Ibanez, 
Bonnet, Debarges, et al., 2004; Polymeropoulos, 
Lavedan, Leroy, et al., 1997; Singleton, Farrer, 
Johnson, et al., 2003). While genetic variants within 
the SNCA locus have also been associated with MSA 
in a few studies (Scholz, Houlden, Schulte, et al., 
2009; Kiely, Asi, Kara, et al., 2013), the connection 
between SNCA overexpression in oligodendrocytes 
and MSA is less clear. Cell-to-cell transmission of 
highly pathogenic misfolded α-synuclein proteins 
from neurons to oligodendrocytes has been 
hypothesized as one potential explanation for the 
prominent oligodendroglial inclusions observed in 
MSA (Peng, Gathagan, Covell, et al., 2018). Our 
observation of lower levels of oligodendrocyte SNCA 
expression in MSA versus PD may lend some further 
support to this theory. Yet it remains to be further 
explored how increased SNCA expression in 
oligodendrocytes may relate to PD pathogenesis and 
how disease mechanisms may vary between PD, 
MSA, and other synucleinopathies.  

Our observation of different oligodendrocyte 
transcriptional changes suggests that PD and MSA, 
while both synucleinopathies, may differ in their 

pathological mechanisms. Future work, including the 
analysis of greater numbers of patient samples is 
needed to verify and generalize our observations. In 
addition, further studies are needed to examine how 
gene expression changes relate to protein levels by 
orthogonal analytic methods.  The oligodendrocyte 
subpopulations profiled here exhibit distinctive 
functional activities which may offer promising 
therapeutic targets for these debilitating and often 
lethal diseases. 
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