D’Mello, S. and Graesser, A. (2009). Automatic detection
of learner’s affect from gross body language. Applied
Artificial Intelligence, 23(2):123–150.
D’Mello, S., Olney, A., Williams, C., and Hays, P. (2012).
Gaze tutor: A gaze-reactive intelligent tutoring sys-
tem. International Journal of human-computer stud-
ies, 70(5):377–398.
Fabian Benitez-Quiroz, C., Srinivasan, R., and Martinez,
A. M. (2016). Emotionet: An accurate, real-time algo-
rithm for the automatic annotation of a million facial
expressions in the wild. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 5562–5570.
Grafsgaard, J., Wiggins, J. B., Boyer, K. E., Wiebe, E. N.,
and Lester, J. (2013). Automatically recognizing fa-
cial expression: Predicting engagement and frustra-
tion. In Educational Data Mining 2013.
Guhan, P., Agarwal, M., Awasthi, N., Reeves, G., Manocha,
D., and Bera, A. (2020). Abc-net: Semi-supervised
multimodal gan-based engagement detection using an
affective, behavioral and cognitive model. arXiv
preprint arXiv:2011.08690.
Guo, X., Li, S., Yu, J., Zhang, J., Ma, J., Ma, L., Liu, W.,
and Ling, H. (2019). Pfld: A practical facial landmark
detector. arXiv preprint arXiv:1902.10859.
Gupta, A., D’Cunha, A., Awasthi, K., and Balasubra-
manian, V. (2016). Daisee: Towards user en-
gagement recognition in the wild. arXiv preprint
arXiv:1609.01885.
Lee, D.-T. and Schachter, B. J. (1980). Two algorithms
for constructing a delaunay triangulation. Interna-
tional Journal of Computer & Information Sciences,
9(3):219–242.
Liao, J., Liang, Y., and Pan, J. (2021). Deep facial spa-
tiotemporal network for engagement prediction in on-
line learning. Applied Intelligence, 51(10):1–13.
Murshed, M., Dewan, M. A. A., Lin, F., and
Wen, D. (2019). Engagement detection in e-
learning environments using convolutional neural
networks. In 2019 IEEE Intl Conf on De-
pendable, Autonomic and Secure Computing, Intl
Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl
Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 80–
86. IEEE.
Ngoc, Q. T., Lee, S., and Song, B. C. (2020). Fa-
cial landmark-based emotion recognition via directed
graph neural network. Electronics (Switzerland), 9(5).
Pekrun, R., Frenzel, A. C., Goetz, T., and Perry, R. P.
(2007). The control-value theory of achievement emo-
tions: An integrative approach to emotions in educa-
tion. In Emotion in education, pages 13–36. Elsevier.
Pekrun, R., Goetz, T., Titz, W., and Perry, R. P. (2002). Aca-
demic emotions in students’ self-regulated learning
and achievement: A program of qualitative and quan-
titative research. Educational psychologist, 37(2):91–
105.
Sezgin, M. C., Gunsel, B., and Kurt, G. K. (2012). Per-
ceptual audio features for emotion detection. Eurasip
Journal on Audio, Speech, and Music Processing,
2012(1):1–21.
Tieleman, T., Hinton, G., et al. (2012). Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31.
Veli
ˇ
ckovi
´
c, P., Casanova, A., Li
`
o, P., Cucurull, G., Romero,
A., and Bengio, Y. (2018). Graph attention networks.
In International Conference on Learning Representa-
tions.
Wang, J., Cao, B., Yu, P., Sun, L., Bao, W., and Zhu, X.
(2018). Deep learning towards mobile applications.
In 2018 IEEE 38th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 1385–
1393. IEEE.
Wen, Y., Zhang, K., Li, Z., and Qiao, Y. (2016). A discrim-
inative feature learning approach for deep face recog-
nition. In European conference on computer vision,
pages 499–515. Springer.
Whitehill, J., Bartlett, M., and Movellan, J. (2008). Auto-
matic facial expression recognition for intelligent tu-
toring systems. In 2008 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 1–6. IEEE.
Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.
Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z.,
Wang, L., Li, C., and Sun, M. (2020). Graph neu-
ral networks: A review of methods and applications.
AI Open, 1:57–81.
CSEDU 2022 - 14th International Conference on Computer Supported Education
34