10.1016/j.asoc.2016.12.019 
Bruna, J. (2017). Community Detection with Graph Neural 
Networks. Stat, 1050, 27. 
Chen,  N.,  Hu,  B.,  &  Rui,  Y.  (2020).  Dynamic  Network 
Community  Detection  with  Coherent  Neighborhood 
Propinquity. IEEE Access, 8(November), 27915–27926. 
https://doi.org/10.1109/ACCESS.2020.2970483 
Chen,  Y.  C.,  Guan,  Z.,  Peng,  Y.,  Shao,  X.,  &  Hasseb,  M. 
(2010).  Technology  and  system  of  constraint 
programming for industry production scheduling — Part 
I_ A  brief  survey  and potential  directions.  Frontiers of 
Mechanical Engineering in China, 5(1), 455–464. 
Chin,  J.  H.,  &  Ratnavelu,  K.  (2017).  A  semi-synchronous 
label  propagation  algorithm  with  constraints  for 
community  detection  in  complex  networks.  Nature 
Publishing Group,  7(1),  1–12.  https://doi.org/10.1038/ 
srep45836 
Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding 
community  structure  in  very  large  networks.  Physical 
Review E, 70(6), 066111. 
Fortunato,  S.  (2010).  Community  detection  in  graphs. 
Physics Reports, 486(3–5), 75–174. 
Ganj,  M.,  Bailey,  J.,  &  Stuckey,  P.  J.  (2018).  Lagrangian 
Constrained  Community  Detection.  The Thirty-Second 
AAAI Conference on Artificial Intelligence (AAAI-18), 
2983–2990. 
Ganji, M., Bailey, J., & Stuckey, P. J. (2017). A Declarative 
Approach  to  Constrained  Community  Detection. 
International Conference on Principles and Practice of 
Constraint Programming, 477–494. 
Girvan,  M.,  &  Newman,  M.  E.  J.  (2002).  Community 
structure in social and biological networks. Proceedings 
of the National Academy of Sciences, 99(12), 7821–7826. 
Karimi,  F.,  Lotfi,  S.,  &  Izadkhah,  H.  (2020).  Multiplex 
community  detection  in  complex  networks  using  an 
evolutionary  approach.  Expert Systems with 
Applications,  146,  113184.  https://doi.org/10.1016/j.es 
wa.2020.113184 
Li,  P.-Z.,  Huang,  L.,  Wang,  C.-D.,  &  Lai,  J.-H.  (2019). 
EdMot :  An  Edge  Enhancement  Approach  for  Motif-
aware  Community Detection.  The 25th ACM SIGKDD 
International Conference on Knowledge Discovery & 
Data Mining,  479–487.  https://doi.org/10.1145/ 
3292500.3330882 
Li,  P.,  Huang,  L.,  Wang, C.,  Huang,  D.,  & Lai,  J. (2018). 
Community  Detection  Using  Attribute  Homogenous 
Motif.  IEEE Access,  6,  47707–47716.  https://doi.org/ 
10.1109/ACCESS.2018.2867549 
Lu,  H.,  Halappanavar,  M.,  &  Kalyanaraman,  A.  (2015). 
Parallel  heuristics  for  scalable  community  detection. 
Parallel Computing, 47, 19–37. https://doi.org/10.1016/ 
j.parco.2015.03.003 
Luxburg, U. Von. (2007). A Tutorial on Spectral Clustering. 
Statistics and Computing, 17(4), 395–416. 
Moayedikia,  A.  (2018).  Multi-objective  community 
detection  algorithm  with  node  importance  analysis  in 
attributed networks. Applied Soft Computing Journal, 67, 
434–451. https://doi.org/10.1016/j.asoc.2018.03.014 
Moosa,  J.,  Awad,  W.,  &  Kalganova,  T.  (2021).  Intelligent 
Community  Detection :  Comparative  Study  
(COVID19  Dataset).  EAMMIS 2021: Artificial 
Intelligence  Systems  and  the  Internet  of  Things  in  the 
 
Digital Era, 239, 189–196. 
Nakata,  K.,  &  Murata,  T.  (2015).  Fast  Optimization  of 
Hamiltonian  for  Constrained  Community  Detection. 
Complex Networks VI, 79–89. 
Newman, M. (2003). Fast algorithm for detecting community 
structure in networks. Physical Review E, 69(6), 066133. 
Newman,  M.  E.  J.  (2006).  Modularity  and  community 
structure in networks. The National Academy of Sciences, 
103(23), 8577–8582. 
Newman,  M.  E.  J.,  &  Girvan,  M.  (2004).  Finding  and 
evaluating  community  structure  in  networks.  Physical 
Review E - Statistical, Nonlinear, and Soft Matter 
Physics,  69(2  2),  1–16.  https://doi.org/10.1103/Phys 
RevE.69.026113 
Raghavan,  U.  N.,  Albert,  R.,  &  Kumara,  S.  (2007).  Near 
linear time algorithm to detect community structures in 
large-scale  networks.  Physical Review E - Statistical, 
Nonlinear, and Soft Matter Physics,  76(3),  1–11. 
https://doi.org/10.1103/PhysRevE.76.036106 
Rozemberczki,  B.,  Davies,  R.,  Sarkar,  R.,  &  Sutton,  C. 
(2019). GemSec: Graph embedding with self clustering. 
Proceedings of the 2019 IEEE/ACM International 
Conference on Advances in Social Networks Analysis 
and Mining, ASONAM 2019,  65–72.  https://doi.org/ 
10.1145/3341161.3342890 
Shen, H., Cheng, X., Guo, F., Gao, L., & Yong, X. (2009). 
Detecting  the  overlapping  and  hierarchical  community 
structure in complex networks. New Journal of Physics, 
11(3),  033015.  https://doi.org/10.1088/1367-2630/11/3/ 
033015 
Sobolevsky, S., Campari, R., Belyi, A., & Ratti, C. (2014). A 
General  Optimization  Technique  for  High  Quality 
Community  Detection  in  Complex  Networks.  Physical 
Review E, 90(1), 012811. 
Tsung, C. K., Ho, H. J., Chen, C. Y., Chang, T. W., & Lee, 
S.  L.  (2020).  Detecting  overlapping  communities  in 
modularity  optimization  by  reweighting  vertices. 
Entropy, 22(8), 819. https://doi.org/10.3390/E22080819 
Usman,  M.,  Iqbal,  W.,  Mary,  Q.,  &  Qadir,  J.  (2020). 
Leveraging  Data  Science  To  Combat  COVID-19 :  A 
Comprehensive Review. IEEE Transactions on Artificial 
Intelligence,  1(1),  85–103.  https://doi.org/10.13140/ 
RG.2.2.12685.28644/4 
Viles, W., & O’Malley,  J. (2017). Constrained Community 
Detection in Social Networks. arXiv prep. 
World  Health  Organization.  (2021).  Contact  tracing  in  the 
context of COVID-19: Interim guidance. Paediatrics and 
Family Medicine,  WHO/2019-nCoV/Contact_Tracing/ 
2020.1, 1–11. https://doi.org/10.15557/PiMR.2020.0005 
WU, L., ZHANG, Q., CHEN, C.-H., GUO, K., & WANG, 
D.  (2020).  Deep  Learning  Techniques  for  Community 
Detection in  Social Networks. IEEE Access,  8,  96016–
96026. https://doi.org/10.1109/ACCESS.2020.2996001 
Wu,  P.,  &  Pan,  L.  (2016).  Multi-objective  community 
detection  method  by  integrating  users  ’  behavior 
attributes. Neurocomputing, 210, 13–25. https://doi.org/ 
10.1016/j.neucom.2015.11.128 
Ye, F., Chen, C., & Zheng, Z. (2018). Deep autoencoder-like 
nonnegative  matrix  factorization  for  community 
detection. International Conference on Information and 
Knowledge Management, Proceedings,  1393–1402. 
https://doi.org/10.1145/3269206.3271697