
Removing Automatically the Ambiguity in Wind Direction Retrieved 
from SAR Images 

Maria da Conceição Proença 
Department of Physics, Marine and Environmental Sciences Centre (MARE-ULisboa), Faculty of Sciences,  

University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal 

Keywords: Wind Direction, Wind Shadows, Direction Ambiguity, SAR Images, Image Processing. 

Abstract: The evaluation of the wind resource in large areas to study the viability of wind farms is ideally studied using 
synthetic aperture radar (SAR) images in which the direction of the wind can be mapped from its effects on 
the water surface. Methods in use usually assume a fixed direction from a measurement for the whole image 
or interpolate the direction of wind fields from numerical weather models, that can be non-coincident in time 
with the SAR snapshot and of much less spatial resolution. The problem remains in the directional ambiguity 
of 180 degrees. This work presents three indexes to identify and validate initial “anchor vectors” that could 
be used as an aid in the complex process of remove this ambiguity, using wind shadows in the water near the 
coastline. These indexes consider several hypotheses to provide for local variability such as physiographic 
accidents, the eccentricity of the shadows and the effect of bay-shaped areas, all quantified through image 
processing methods. Comparing the results with the reference wind field provided by ESA for the time of 
acquisition of the ENVISAT-ASAR image used we could conclude that this is a promising line of work. 

1 INTRODUCTION 

The ambiguity in wind direction retrieval is a key 
problem to which there exists a very recent solution 
(Zhang, 2021) using support vector machine (SVM) 
based models, with performance still depending on 
sea surface wind speed. The issue of ambiguity has 
been addressed from time to time, although wind 
direction remains the most appealing problem since 
the 1980s (Heron, 1986), (Hildebrand, 1994); later, 
(Kerkmann, 1998) mentioned four different methods 
for removing the direction ambiguity, all involving a 
human operator or a trained meteorologist, one of 
them autonomous in the sense that no external data is 
needed. In the 2000s two main methods were being 
used to wind retrieval – those based on gradient-
oriented histogram (Koch, 2004), and wavelets based 
(Du, 2002), (Fichaux, 2002), followed by 
improvements from the latter as in (Corazza, 2020), 
who use the Radon transform. Some adaptation of 
successful methods also took place, like (Horstmann, 
2004) who adapts the CMOD4, originally developed 
for ERS-1 and 2 to ENVISAT-ASAR images with 
success, while (Kerbaol, 2005) uses coastal 
information. (Young, 2006) concludes that automatic 
and semi-automatic extraction of wind direction are 

complimentary and ensure a higher liability in wind 
direction retrieval from SAR images. (Koch, 2004) in 
the same paper mentioned above uses a 
semiautomatic removal of the ambiguity by 
combining manual selecting of unique directions on a 
set of subimages and automatically choosing the best 
aligned directions in the remaining subimages, while 
(Song, 2006) uses buoy data to solve the ambiguity in 
a comparation of two algorithms for wind speed.  

The ambiguity in the direction retrieval was not an 
appealing subject for automation, but still seems 
possible to implement, at least in areas near the coast. 
The image processing methodology exposed here 
allowed the identification of anchor vectors near the 
shoreline that could act together with global methods 
to ensure the wind direction ambiguity is 
automatically assessed in the whole wind field, which 
could be useful in preliminary studies for offshore 
wind farms settings. 

2 MATERIALS AND 
METHODOLOGY 

The image used is a medium resolution synthetic 
aperture radar image that was acquired by Envisat 
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ASAR – Wide Swath Mode (WSM) instrument, with 
a nominal resolution of 150x150 m (range x azimuth), 
a pixel spacing of 75 m and covering 400X400 km 
(https://earth.esa.int) acquired over Corsica at 2007-
11-13 (Figure 1-a). 

To make the successive processing steps of the 
methodology more perceptible, we will be using the 
sub-image identified in red (Figure 1-b) in the 
ENVISAT image whenever we consider more useful 
that the detail is observed to illustrate the reasoning. 

 
a 

 
b 

Figure 1: SAR image acquired by ENVISAT mission over 
Corsica (a) and zoom on the area which will be used to 
illustrate the image processing operations (b). 

The first step involves calibration and 
computation of a land mask, and it was achieved with 
ESA open-source software Next ESA SAR 
Toolbox (NEST). A land mask is a binary image to 
discriminate between land and water, with two values 
usually 0 and 1), where we can attribute the value 1 
to the subject of interest to be altered in subsequent 
morphological operations until we have the suitable 
mask to apply to the work image.  

From the land mask obtained (Figure 2), a 
sequence of morphological and logical operations is 
needed to obtain a “ribbon mask”. The procedure is 
schematically detailed in Figure 3. 

 
Figure 2: Land mask obtained using NEST: binary image 
where the land is represented with the value 1 (white) and 
the sea area has the value 0 (black). 

Using the initial land mask here represented by a 
white triangle in a black background (Figure 3-a), two 
binary images are computed:  the first one by dilation, 
a morphological operation that enlarge the areas with 
value 1 presented in white (Pratt, 2001)  to obtain a 
new mask (Figure 3-b), and the second one by 
inversion: the value 1 in the initial image becomes 0 
and vice-versa (Figure 3-c).  

a b 

c d 
Figure 3: Schematic representation of the sequence of 
operations to obtain a “ribbon” mask: (a) initial land mask, 
(b) dilation of (a), (c) inversion or negation of (a) and (d) 
logical AND between (b) and (c) – only the areas where 
both masks have value 1 will receive a positive value. 
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The structural element used for dilation in the 
ENVISAT image was a disk of radius 25 pixel, 
applied successively the number of times needed to 
encompass all the area containing shadows – to 
automatize this step, a maximum width for the mask 
should be assessed from a bigger dataset of images of 
the same sensor. 

When those masks (Figure 3-b and c) are 
combined by a logical AND operation, the result is a 
“ribbon mask” (Figure 3-d). 

With the new mask a corridor near the coastline 
can be isolated (Figure 4-a), where the wind shadows 
are now visible as dark spots near the shoreline 
(Figure 4-b). 

 
a 

 
b 

Figure 4: The “ribbon” mask is applied to the original image 
(a), isolating the area of water near the shoreline, where 
wind shadows are apparent (b). 

Next step is to isolate the shadows as individual 
objects, which is made by thresholding the image 
(Figure 5-a), giving the value 1 to the pixels that are 
between the thresholds 0 (corresponding to the area 
masked) and an appropriate radiometric level, that 
will depend on the image codification – pixels in 16 
bits images are in the range [0, 65 535], while in 8 bits 
images only 256 levels are possible, in the range [0, 

255]. The threshold is computed using the subset of 
pixels belonging to the corridor and assigned to the 
average less two standard deviations of the intensities 
present. 

Once the threshold is applied to the image, the 
resulting binary image is ready for the morphological 
operations needed to consolidate each shadow, that 
will consist in a sequence of dilation followed by 
erosion with the same structuring element, usually 
called closing (Figure 5-b), achieved with a smaller 
structural element to preserve the form - here a disk 
of radius 11.  

 
a 

 
b 

Figure 5: Candidates for wind shadows isolated by intensity 
thresholding (a) and consolidated using morphological 
operations (b). 

After shadow localization, we looked for the 
digital elevation model (from SRTM, characterized 
below) to analyse each shadow and its immediate 
neighbourhood on land, to determine its credibility as 
a wind shadow (Figure 6). Three validation criteria 
are proposed: a bay factor, an abrupt cliff analysis and 
the shadow eccentricity, detailed and evaluated in the 
next section. 
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Figure 6: The candidates to wind shadows in different 
colours and the digital elevation model on land side. 

3 VALIDATION CRITERIA 

The criteria proposed for validation of the wind 
shadows as such are not exhaustive but worked in the 
range of conditions present in the image and can be 
applied to any similar coastline, as the three are based 
in common physiographic and natural effects.  

3.1 Bay Factor 

The rationale for the Bay factor sits in the fact that an 
open bay will not provoke a wind shadow, while a 
more closed bay will usually induce an area of 
shadow in the near water.  

This was transformed in a quantitative index 
using the quotient between the number of pixels that 
constitute the bay envelope and the number of pixels 
belonging to the shadow envelope, schematically 
identified in Figure 7. 

 
Figure 7: Definition of the pixels forming the bay envelope 
in pink in the land side, and the pixels belonging to the 
shadow envelope, in green, in turn of the blue shadow over 
the water.  

The Bay factor computed this way (eq. 1) will be 
bigger for a closed bay, and low for an open bay.  

 

Bay factor =  
∑  ௡ሺ௜,௝ሻ೔,ೕ ∈ ್ೌ೤∑  ௡ሺ௜,௝ሻ೔,ೕ ∈ ೞ೓ೌ೏ಶ೙ೡ೐೗೚೛೐  (1)

Examples of the values obtained for different 
forms of bays with this definition and the shadows 
previously processed are shown in Figure 8. 

 
a 

 
b 

 
c 

 
d 

Figure 8: Examples of shadows and bays present in the 
image. Land is white and water is grey, and the bay and 
shadow envelopes follow the colour code in Figure 7. The 
values for the bay factor are 0.09 (a), 0.28 (b), 0.50 (c) and 
0.79 (d). 

A very closed bay such as the one in Figure 8-c 
will have a high Bay factor, but this configuration 
probably is enough cause for a calm water, observed 
as shadow in a SAR image, so shadows scoring high 
Bay factors will not be considered wind shadows.  
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3.2 Abrupt Cliff Index 

The altimetry came from the digital elevation data 
(DEM) obtained by the Shuttle Radar Topography 
Mission (SRTM), an international project 
spearheaded by the U.S. National Geospatial-
Intelligence Agency (NGA) and the U.S. National 
Aeronautics and Space Administration (NASA). The 
project covered more than 80% of the Earth’s solid 
surface during a 11-day mission of the Space Shuttle 
Endeavour in February 2000. The SRTM data is 
available as 3 arc second (approx. 90 m ground 
resolution) and has a vertical error reported to be less 
than 16 m (https://www.usgs.gov). 

This digital elevation model was used to compute 
the local gradient near each shadow. A flat area will 
have a low local gradient, and a steepest area will 
have a higher value (Figure 9).  

 
Figure 9: The flat area on the left will have a low value for 
the local gradient while the abrupt cliffs on the right will 
have a high gradient.  

The cliff index is computed considering the local 
elevation from the DEM (Figure 10-a), its gradient 
(Figure 10-b), and the absolute value of this gradient 
(Figure 10-c). The roughness of the terrain becomes 
more apparent with these operations. 

The ACliff index is the sum of the pixels 
belonging to the seashore shadow track (sst) in the 
image containing the absolute value of the gradient of 
the elevation (eq. 2).  

ACliff = ∑  absሺgradሺelevation )) ௜,௝∈ ୱୱ୲    (2) 

 
a 

 
b 

 
c 

Figure 10: The sequence of images needed to compute the 
Abrupt Cliff index: the local elevation from the DEM (a), 
the gradient of the local elevation (b) and its absolute value 
(c). 

As the terrain becomes steeper, the abrupt cliff 
index increases. When a shadow is near a flat area 
(Figure 11-a), the cliff index will be low, and will 
increase as the terrain roughness increases. 
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b 

 
c 

Figure 11: Examples of three shadows (red) near terrain 
with different characteristic – the CliffIndex is 1.1 for flat 
terrain (a), 4.8 for the shadow near median elevation (b), 
and 11.4 for the shadow near abrupt cliffs (c). 

3.3 Shadow Eccentricity 

The last indicator we consider for the localization of 
wind shadows is the eccentricity, computed as the 
eccentricity of the ellipsoid enveloping the shadow, 
as demonstrated in Figure 12.  

 
a 

 
b 

 
c 

Figure 12: Three shadows with different eccentricity values 
associated: a) 0.49, b) 0.69 and c) 0.93. 
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The eccentricity of the ellipsoid is computed as 
the square root of the difference between the squared 
values of the lengths of the semi-major axis (a) and 
semi-minor axis (b) divided by the first (eq. 3).  

Eccentricity =  ඥ௔మି ௕మ௔  (3)

The information needed is the direction of the 
anchor vectors, that will be established from the 
centre of the shadows accepted (end point for the 
vector) and the nearest point in the coastline, 
considering the extension in contact with the ellipsoid 
enveloping the shadow (initial point for the vector). 
The magnitude of these vectors will be dependent of 
the wind field local intensity, and is usually computed 
automatically (Rufenach, 1998) since late 90’s.  

 
a 

 
b 

Figure 13: The seven anchor vectors built from the wind 
shadows in the SAR image (a) and the reference wind field 
for that date (b). 

With these tree indicators, we build a criterion to 
accept/reject each candidate shadow as a trustful wind 
shadow, with a rationale including a high Cliff index 
to identify abrupt cliffs in the proximity of each 
shadow that can be the leading cause of the wind 
shadow, a low Bay factor to eliminate shadows in 
almost enclosed bay areas, and the eccentricity of the 
ellipses to refine admissible shadows and find the 
line-of-sight in the direction of the shadow to give an 
orientation for the anchor vector.  

All these criteria and previous location of areas of 
interest can be automatically implemented in a single 
procedure, avoiding external data and human curation 
with inherent subjectivity. To do so, the estimation of 
the areas containing shadows can be done with a fixed 
maximum width for the ribbon mask.   

From the 28 shadow candidates, only 7 verify the 
criteria (Figure 13-a). 

Considering the positioning of the seven vectors 
obtained from the wind shadows and comparing with 
the wind vectors in approximately the same positions 
in the reference wind field provided by ESA for that 
date (Figure 13-b), we can see the orientation of the 
seven vectors agree in a reasonable extend with the 
local orientation of the wind field. 

4 CONCLUSIONS 

Wind field monitoring is especially important in the 
preliminary phase to select among the best locations 
for wind farms and becomes more difficult when 
offshore wind farms are the goal.  

This case study intended to show that SAR images 
allow to directly extract sets of vectors near the 
coastline that could be used to unwrap the wind 
direction ambiguity in large areas automatically, 
complementing the wind direction retrieval that is 
already automatized, with a reasonable confidence.  

With this kind of procedure, all the operations for 
wind retrieval offshore could be completed without 
the need of in-situ data (buoy or other external data), 
directly from the remote sensed images. 
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