identified. The obtained accuracy was superior,
which is the best accuracy obtained for R8, and
WebKB datasets.
7.1 Recommendation for Future
Studies
Future research is intended to apply the suggested
technique with many queries and a large text
documents dataset. The research further provides a
basis for a prospective study that will explore the
impact of adjacent words inside a sentence and words
that show up in consecutive sentences to deal with
them separately when the minimum distance is to be
calculated. Also, an exploration in the technique
parameter's space may yield improved TC accuracy.
REFERENCES
Al-Taani, A., & Al-Sayadi, S. (2020). Classification of
Arabic Text Using Singular Value Decomposition and
Fuzzy C-Means Algorithms. Algorithms For Intelligent
Systems, 111-123. doi: 10.1007/978-981-15-3357-0_8
Automated Machine Learning. (2019). The Springer Series
on Challenges in Machine Learning. doi: 10.1007/978-
3-030-05318-5
Baker, S., & Korhonen, A. (2017). Initializing neural
networks for hierarchical multi-label text classification.
Bionlp 2017. doi: 10.18653/v1/w17-2339
Barberá, P., Boydstun, A., Linn, S., McMahon, R., &
Nagler, J. (2020). Automated Text Classification of
News Articles: A Practical Guide. Political Analysis,
29(1), 19-42. doi: 10.1017/pan.2020.8
Eminagaoglu, M. (2020). A new similarity measure for
vector space models in text classification and
information retrieval. Journal Of Information Science,
016555152096805. doi: 10.1177/0165551520968055
HaCohen-Kerner, Y., Miller, D., & Yigal, Y. (2020). The
influence of preprocessing on text classification using a
bag-of-words representation. PLOS ONE, 15(5),
e0232525. doi: 10.1371/journal.pone.0232525
Hartmann, J., Huppertz, J., Schamp, C., & Heitmann, M.
(2019). Comparing automated text classification
methods. International Journal of Research in
Marketing, 36(1), 20-38. doi: 10.1016/j.ijresmar.20
18.09.009
Kandé, D., Marone, R., Ndiaye, S., & Camara, F. (2018). A
Novel Term Weighting Scheme Model. Proceedings Of
The 4Th International Conference on Frontiers of
Educational Technologies - ICFET '18. doi: 10.1145/
3233347.3233374
Kherwa, P., & Bansal, P. (2017). Latent Semantic Analysis:
An Approach to Understand Semantic of Text. 2017
International Conference on Current Trends in
Computer, Electrical, Electronics and Communication
(CTCEEC). doi: 10.1109/ctceec.2017.8455018
Kowsari, Jafari Meimandi, Heidarysafa, Mendu, Barnes, &
Brown. (2019). Text Classification Algorithms: A
Survey. Information, 10(4), 150. doi: 10.3390/info10
040150
Machine Learning and Knowledge Discovery in Databases.
Applied Data Science and Demo Track. (2021). Lecture
Notes in Computer Science. doi: 10.1007/978-3-030-
67670-4
Mukherjee, I., Sahana, S., & K. Mahanti, P. (2017). An
Improved Information Retrieval Approach to Short
Text Classification. International Journal of
Information Engineering and Electronic Business, 9(4),
31-37. doi: 10.5815/ijieeb.2017.04.05
Sarkar, D. (2019). Text Analytics with Python. doi:
10.1007/978-1-4842-4354-1
Sokolova, M. (2017). Big Text advantages and challenges:
classification perspective. International Journal of
Data Science and Analytics, 5(1), 1-10. doi:
10.1007/s41060-017-0087-5
Thangaraj, M., & Sivakami, M. (2018). Text Classification
Techniques: A Literature Review. Interdisciplinary
Journal of Information, Knowledge, And Management,
13, 117-135. doi: 10.28945/4066
Torres-Carrion, P., Gonzalez-Gonzalez, C., Aciar, S., &
Rodriguez-Morales, G. (2018). Methodology for
systematic literature review applied to engineering and
education. 2018 IEEE Global Engineering Education
Conference (EDUCON). doi: 10.1109/educon.2018.83
63388
Verma, P., Goyal, A., & Gigras, Y. (2020). Email phishing:
text classification using natural language processing.
Computer Science and Information Technologies, 1(1),
1-12. doi: 10.11591/csit.v1i1.p1-12
Zhao, R., & Mao, K. (2018). Fuzzy Bag-of-Words Model
for Document Representation. IEEE Transactions on
Fuzzy Systems, 26(2), 794-804. doi: 10.1109/tfuzz.20
17.2690222