Li, Z. and Zhou, Y. (2005). Pr-miner: automatically extract-
ing implicit programming rules and detecting viola-
tions in large software code. ACM SIGSOFT Software
Engineering Notes, 30(5):306–315.
Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z., Wang,
S., and Wang, J. (2018a). Sysevr: A framework for
using deep learning to detect software vulnerabilities.
CoRR, abs/1807.06756.
Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng,
Z., and Zhong, Y. (2018b). VulDeePecker: A deep
learning-based system for vulnerability detection. In
Network and Distributed System Security Symposium.
NDSS.
Lin, G., Wen, S., Han, Q.-L., Zhang, J., and Xiang, Y.
(2020). Software vulnerability detection using deep
neural networks: A survey. Proceedings of the IEEE,
108(10):1825–1848.
Lin, G., Xiao, W., Zhang, J., and Xiang, Y. (2019).
Deep learning-based vulnerable function detection: A
benchmark. In International Conference on Informa-
tion and Communications Security, pages 219–232.
Springer.
Lin, G., Zhang, J., Luo, W., Pan, L., Xiang, Y., de Vel, O. Y.,
and Montague, P. (2018). Cross-project transfer rep-
resentation learning for vulnerable function discovery.
IEEE Trans. Ind. Informatics, 14(7):3289–3297.
Livshits, B. and Chong, S. (2013). Towards fully automatic
placement of security sanitizers and declassifiers. In
Giacobazzi, R. and Cousot, R., editors, The 40th An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013. ACM.
Luo, Z., Rezk, T., and Serrano, M. (2011). Automated
code injection prevention for web applications. In
M
¨
odersheim, S. and Palamidessi, C., editors, Theory
of Security and Applications - Joint Workshop, volume
6993 of Lecture Notes in Computer Science. Springer.
Maurel, H., Vidal, S., and Rezk, T. (2021). Statically iden-
tifying XSS using Deep Learning. In In Proceedings
of the 18th International Conference on Security and
Cryptography, , pages 99-110. SECRYPT.
Melicher, W., Das, A., Sharif, M., Bauer, L., and Jia, L.
(2018). Riding out domsday: Towards detecting and
preventing DOM cross-site scripting. In 25th Annual
Network and Distributed System Security Symposium,
NDSS. The Internet Society.
Melicher, W., Fung, C., Bauer, L., and Jia, L. (2021). To-
wards a lightweight, hybrid approach for detecting
DOM XSS vulnerabilities with machine learning. In
WWW ’21: The Web Conference 2021, Virtual Event,
pages 2684–2695. ACM / IW3C2.
Mokbal, F. M. M., Dan, W., Imran, A., Jiuchuan, L., Akhtar,
F., and Xiaoxi, W. (2019). Mlpxss: An integrated
xss-based attack detection scheme in web applications
using multilayer perceptron technique. IEEE Access,
7:100567–100580.
Node.js (2021). nodejs.org github repository. https://github.
com/nodejs/nodejs.org.
OWASP (2021). Cross site scripting prevention cheat
sheet. https://cheatsheetseries.owasp.org/cheatsheets/
Cross
Site Scripting Prevention Cheat Sheet.html.
Russell, R. L., Kim, L. Y., Hamilton, L. H., Lazovich, T.,
Harer, J. A., Ozdemir, O., Ellingwood, P. M., and Mc-
Conley, M. W. (2018). Automated vulnerability detec-
tion in source code using deep representation learning.
CoRR, abs/1807.04320.
Schoepe, D., Balliu, M., Pierce, B. C., and Sabelfeld, A.
(2016). Explicit secrecy: A policy for taint tracking.
In IEEE European Symposium on Security and Pri-
vacy, EuroS&P. IEEE.
Serrano, M. (2006). Hop, multitier web programming.
Serrano, M., Gallesio, E., and Loitsch, F. (2006). Hop: a
language for programming the web 2. 0. In OOPSLA
Companion, pages 975–985.
Serrano, M. and Prunet, V. (2016). A glimpse of hopjs.
In 21th Sigplan Int’l Conference on Functional Pro-
gramming (ICFP), pp. 188–200. ICFP.
Sestili, C. D., Snavely, W. S., and VanHoudnos, N. M.
(2018). Towards security defect prediction with AI.
CoRR, abs/1808.09897.
Shar, L. K. and Tan, H. B. K. (2013). Predicting SQL in-
jection and cross site scripting vulnerabilities through
mining input sanitization patterns. Inf. Softw. Technol.,
55(10):1767–1780.
She, D., Chen, Y., Shah, A., Ray, B., and Jana, S. (2020).
Neutaint: Efficient dynamic taint analysis with neural
networks. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE.
Som
´
e, D. F., Bielova, N., and Rezk, T. (2016). On the con-
tent security policy violations due to the same-origin
policy. CoRR, abs/1611.02875.
Staicu, C.-A., Pradel, M., and Livshits, B. (2018). SYN-
ODE: Understanding and automatically preventing in-
jection attacks on NODE.JS. In Network and Dis-
tributed System Security Symposium. NDSS.
Wang, S., Liu, T., and Tan, L. (2016). Automatically
learning semantic features for defect prediction. In
IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE), pages 297–308. IEEE.
Weisenburger, P., Wirth, J., and Salvaneschi, G. (2020).
A survey of multitier programming. ACM Comput.
Surv., 53(4):81:1–81:35.
Zhang, X., Zhou, Y., Pei, S., Zhuge, J., and Chen, J. (2020).
Adversarial examples detection for XSS attacks based
on generative adversarial networks. IEEE Access,
8:10989–10996.
Comparing the Detection of XSS Vulnerabilities in Node.js and a Multi-tier JavaScript-based Language via Deep Learning
201