band of total carotenoids at 1002 cm
-1
, and further
investigations should be carried out similarly to
optimize the selectivity for urea.
ACKNOWLEDGMENTS
This work was supported by the École Polytechnique
Fédérale de Lausanne (EPFL) research fund. The
authors gratefully thank Dr. Richard Gaal for highly
fruitful discussions about Raman spectroscopy.
REFERENCES
Abdoli, S., Hessler, D., Vora, A., Smither, B., & Stuckey,
H. (2020). Descriptions of diabetes burnout from
individuals with Type 1 diabetes: an analysis of
YouTube videos. Diabetic Medicine, 37(8), 1344-1351.
Adar, F. (2017). Carotenoids-their resonance Raman
spectra and how they can be helpful in characterizing a
number of biological systems. Spectroscopy, 32(6), 12-
20.
Adar, F., Lee, E., Mamedov, S., & Whitley, A. (2010).
Experimental evaluation of the depth resolution of a
Raman microscope. Microscopy and Microanalysis,
16(S2), 360-361.
Asharani, P., Wu, Y. L., Gong, Z., & Valiyaveettil, S.
(2008). Toxicity of silver nanoparticles in zebrafish
models. Nanotechnology, 19(25), 255102.
Bohn, T. (2018). Metabolic fate of bioaccessible and non-
bioaccessible carotenoids. Non-Extractable
Polyphenols and Carotenoids: Importance in Human
Nutrition and Health, 165-200.
Bommer, C., Sagalova, V., Heesemann, E., Manne-
Goehler, J., Atun, R., Bärnighausen, T., . . . Vollmer, S.
(2018). Global economic burden of diabetes in adults:
projections from 2015 to 2030. Diabetes care, 41(5),
963-970.
Boukhayma, A. (2018). Low-noise CMOS image sensors.
In Ultra Low Noise CMOS Image Sensors (pp. 13-34):
Springer.
Boukhayma, A., Peizerat, A., & Enz, C. (2016). A sub-0.5
electron read noise VGA image sensor in a standard
CMOS process. IEEE Journal of solid-state circuits,
51(9), 2180-2191.
Braun, F., Schwolow, S., Seltenreich, J., Kockmann, N.,
Röder, T., Gretz, N., & Rädle, M. (2016). Highly
sensitive Raman spectroscopy with low laser power for
fast in-line reaction and multiphase flow monitoring.
Analytical chemistry, 88(19), 9368-9374.
Brinati, L. M., de Fátima Januário, C., Balbino, P. C.,
Gonçalves Rezende Macieira, T., Cardoso, S. A.,
Moreira, T. R., & de Oliveira Salgado, P. (2021).
Incidence and Prediction of Unstable Blood Glucose
Level among Critically Ill Patients: A Cohort Study.
International Journal of Nursing Knowledge, 32(2), 96-
102.
Chege, B. M., Birech, Z., Mwangi, P. W., & Bukachi, F. O.
(2019). Utility of Raman spectroscopy in diabetes
detection based on biomarker Raman bands and in
antidiabetic efficacy studies of herbal extract Rotheca
myricoides Hochst. Journal of Raman Spectroscopy,
50(10), 1358-1366.
Dubessy, J., Lhomme, T., Boiron, M.-C., & Rull, F. (2002).
Determination of chlorinity in aqueous fluids using
Raman spectroscopy of the stretching band of water at
room temperature: application to fluid inclusions.
Applied spectroscopy, 56(1), 99-106.
Dudek, M., Zajac, G., Szafraniec, E., Wiercigroch, E., Tott,
S., Malek, K., . . . Baranska, M. (2019). Raman Optical
Activity and Raman spectroscopy of carbohydrates in
solution. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 206, 597-612.
Fujihara, J., Nishimoto, N., Yasuda, T., & Takeshita, H.
(2019). Discrimination between infant and adult
bloodstains using micro‐Raman spectroscopy: A
preliminary study. Journal of forensic sciences, 64(3),
698-701.
Golparvar, A., Boukhayma, A., Loayza, T., Caizzone, A.,
Enz, C., & Carrara, S. (2021). Very Selective Detection
of Low Physiopathological Glucose Levels by
Spontaneous Raman Spectroscopy with Univariate
Data Analysis. BioNanoScience, 1-7.
Greer, J. S., Petrov, G. I., & Yakovlev, V. V. (2013). Raman
spectroscopy with LED excitation source. Journal of
Raman Spectroscopy, 44(7), 1058-1059.
Gulyamov, S., Shamshiddinova, M., Bae, W. H., Park, Y.
C., Kim, H. J., Cho, W. B., & Lee, Y. M. (2021).
Identification of biomarkers on kidney failure by
Raman spectroscopy. Journal of Raman Spectroscopy.
Huang, N., Short, M., Zhao, J., Wang, H., Lui, H., Korbelik,
M., & Zeng, H. (2011). Full range characterization of
the Raman spectra of organs in a murine model. Optics
express, 19(23), 22892-22909.
Ju, J., Hsieh, C.-M., Tian, Y., Kang, J., Chia, R., Chang, H.,
. . . Liu, Q. (2020). Surface enhanced Raman
spectroscopy based biosensor with a microneedle array
for minimally invasive in vivo glucose measurements.
ACS sensors, 5(6), 1777-1785.
Kang, J. W., Park, Y. S., Chang, H., Lee, W., Singh, S. P.,
Choi, W., . . . Park, J. (2020). Direct observation of
glucose fingerprint using in vivo Raman spectroscopy.
Science Advances, 6(4), eaay5206.
Kiefer, W. (2007). Recent advances in linear and non-linear
Raman spectroscopy I. Journal of Raman
Spectroscopy: An International Journal for Original
Work in all Aspects of Raman Spectroscopy, Including
Higher Order Processes, and also Brillouin and
Rayleigh Scattering, 38(12), 1538-1553.
Krishnan, R., & Shankar, R. (1981). Raman effect: History
of the discovery. Journal of Raman Spectroscopy,
10(1), 1-8.
Lawson, E., Barry, B., Williams, A., & Edwards, H. (1997).
Biomedical applications of Raman spectroscopy.
Journal of Raman Spectroscopy, 28(2‐3), 111-117.
Li, Z., Deen, M. J., Kumar, S., & Selvaganapathy, P. R.
(2014). Raman spectroscopy for in-line water quality