
A Comprehensive Dynamic Data Flow Analysis of Object-Oriented
Programs

Laura Troost and Herbert Kuchen
Institute of Practical Computer Science, University of Münster, Leonardo Campus, Münster, Germany

Keywords: Data Flow Analysis, Bytecode Analysis, Java Instrumentation.

Abstract: Studies have shown that in the area of testing data-flow coverage is often more effective in exposing errors
compared to other approaches such as branch coverage. Thus, evaluating and generating test cases with re-
spect to the data-flow coverage is desirable. Unfortunately, data-flow coverage is rarely considered in practice
due to the lack of appropriate tools. Existing tools are typically based on static analysis and cannot distinguish
between traversable and non-traversable data flows. They also have typically difficulties with properly han-
dling aliasing and complex data structures. Thus, we propose a tool for dynamically analyzing the data-flow
coverage which avoids all these drawbacks. In combination with our existing test-case generator, it enables the
creation of an (almost) minimal set of test cases that guarantee all data flows to be covered. We have evaluated
our tool based on a couple of benchmarks.

1 INTRODUCTION

Data-flow analysis has originally been developed for
compiler optimizations and is concerned with iden-
tifying the data flow within a program (Allen and
Cocke, 1976). The concept of data flow considers the
definition and usage of data throughout the program.
The idea is that for each value defined in a program
it should be checked whether it causes problems at
places where this value is used. Data-flow analysis
has been continuously researched and applied to areas
such as testing or test case generation (Su et al., 2017).
For this, studies have shown that data-flow coverage
is often more effective in exposing errors compared
to other approaches such as branch coverage (Frankl
and Iakounenko, 1998). Thus, evaluating and gener-
ating test cases with respect to the data-flow coverage
is desirable.

However, only a few tools exist for tracking the
data-flow coverage for a given program (Su et al.,
2017). Even more importantly, the existing tools typ-
ically focus on a static analysis of the data flow. This
causes severe limitations such as that a syntactically
identified data flow may not be traversable due to
semantic circumstances. Additionally, each existing
tool does not consider every data flow aspect of the
program in detail. For instance, some tools only focus
on the data flow within one method (intra-procedural)
(Vincenzi et al., 2003) while others regard objects

and arrays as a whole instead of differentiating which
field or element is defined/used (Bluemke and Rem-
biszewski, 2009; Misurda et al., 2005). Furthermore,
although these existing tools have been researched,
they are either not publicly available or not working
reliably and outdated (see Section 5). As a conse-
quence, due to the lack of appropriate tools, data-flow
testing is largely ignored in practice.

This paper introduces an open-source prototype
that dynamically identifies the reachable data flows
of a given Java program. In combination with our ex-
isting test-case generator (Winkelmann et al., 2022),
which produces one test-case for every path through
the classes under test, it can be used to reduce this
set of test-cases to an (almost) minimal set ensuring
data-flow coverage.

Our prototype not only considers the data flow
of a single method (intra-procedural) but also over
methods and classes (inter-procedural) (Denaro et al.,
2014). Moreover, typical challenges such as aliasing
and the precise treatment of used array elements are
taken into account. Hence, the prototype proposed in
this paper contributes by providing the means to pre-
cisely and reliably analyze the executed data flow of a
given program. This is especially relevant for evaluat-
ing and generating test cases. Our prototype is called
Dacite (DAta-flow Coverage for Imperative TEsting).

This paper is organized as follows. Section 2 ex-
plains the fundamental concepts of data-flow analy-

Troost, L. and Kuchen, H.
A Comprehensive Dynamic Data Flow Analysis of Object-Oriented Programs.
DOI: 10.5220/0010984800003176
In Proceedings of the 17th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2022), pages 267-274
ISBN: 978-989-758-568-5; ISSN: 2184-4895
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

267

sis. Section 3 explains the implementation of the dy-
namic data-flow analysis. Therefore, it is first illus-
trated how the data flow is represented and then the
two steps of the analysis, the bytecode transforma-
tion and the dynamic analysis, are explained. After-
wards, in Section 4, the results are evaluated and val-
idated given benchmark examples. Section 5 summa-
rizes the related work concerning dynamic analysis
and data flow. Section 6 concludes the results of this
paper.

2 FUNDAMENTAL CONCEPTS

As described in the introduction, data flow consid-
ers the definition and usage of data throughout the
program. To represent and describe this information,
the definitions and corresponding usages can be con-
nected to so-called definition-usage chains (DUCs),
also referred to as definition-usage pairs or definition-
usage relations. They can be defined as follows:

let X be a variable and S,S′,S′′ instructions
de f (S) :={ X | S writes to X}

use(S) :={ X | S reads from X}
If X ∈ de f (S) ∪ use(S′) and X /∈ de f (S′′) for each
S′′ on a path from S to S′, (X ,S,S′) forms a definition-
usage chain (Majchrzak and Kuchen, 2009).

The DUCs of a program can be identified stat-
ically by analyzing the program code or dynami-
cally during the execution (Su et al., 2017). One
main limitation of statically analyzing the program
is that it is not possible to differentiate traversable
and non-traversable DUCs. Consider the code snip-
pet in Listing 1 and suppose that p1(int) and
p2(int) are boolean methods defined elsewhere
and that p1(0) implies p2(0). In this case, the
DUC (x,x=0,y=100/x) is not traversable, since y
= 100/x is unreachable. On the other hand, the DUC
(x,x=0,y=x+1) is traversable. When testing and ex-
ecuting programs, only traversable DUCs are of in-
terest. Since it is in general not possible to decide
statically whether a DUC is traversable, we will use a
dynamic approach.

1 int x = 0; int y;
2 if (p1(x)) {
3 if (p2(x)) { y = x+1;}
4 else { y = 100/x;}
5 }

Listing 1: Example for traversable and non-traversable
DUCs.

Moreover, when analyzing the data flow of a Java

program, several aspects need to be considered. One
important aspect is aliasing. When two variables
point to the same object in Java, they are aliases. In

1 Point p1 = new Point(1,2);
2 Point p2 = p1;
3 p2.setX(3);
4 System.out.println(p1.getX());

Listing 2: Example for aliasing.

Listing 2, p1 and p2 are aliases referring to the same
object (of some assumed class Point with getters and
setters for its coordinates). Consequently, when the
field x of p2 is changed in line 3, p1.x is changed
as well. This needs to be taken into account when
generating DUCs, as although p1.x has not been ac-
cessed in line 3, its value has changed here. Hence,
(x, p2.setX(3), p1.getX()) is a DUC.

A dynamic analysis and hence also Dacite is able
to precisely identify these aliases by directly gath-
ering the relevant information during the execution
while the static analysis typically has to rely on tech-
niques such as overapproximation (Denaro et al.,
2014). Additionally, as mentioned before, data-flow
analysis can be distinguished into intra-procedural
and inter-procedural analysis. While intra-procedural
data flow focuses only on single methods, inter-
procedural approaches enable the analysis to identify
DUCs over the boundary of methods or classes (Har-
rold and Soffa, 1989). This inter-procedural approach
is especially relevant for programs written in object-
oriented languages such as Java which typically con-
sist of several methods and classes. The dynamic
analysis of Dacite takes inter-procedural DUCs into
account. Here, parameter passing can also lead to
aliasing. For instance, in Listing 3 two methods are
defined. Within method1 a variable x is defined (line
2) which is then passed to method2 as a parameter
(line 3). Here, the definition in line 2 and the usage in
line 6 form a DUC although different variable names
are used.

1 public void method1(){
2 int x = 3;
3 method2(x);
4 }
5 public void method2(int z){
6 System.out.println(z);
7 }

Listing 3: Example for inter-procedural DUCs.

Moreover, when analyzing objects and arrays, dif-
ferent levels of abstractions can be made for the iden-

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

268

tification of DUCs. Either objects and arrays can be
regarded as a whole, i.e. changing one field or ele-
ment results in the definition of the complete object
or array, or each field or element can be regarded
separately. Thus, separate DUCs are considered for
the different fields and elements. While the first is
easier to implement, the latter allows for a more de-
tailed analysis of the data flow within the program and
hence for identifying problems within the program.
Dacite supports the detailed identification of DUCs
for objects fields and array elements.

1 Point p = new Point(1,2);
2 int[] a = {1,2,3,4};
3 p.setX(3);
4 a[0] = 5;
5 System.out.println(p.getY(),a[1]);

Listing 4: Example for considering object fields and array
elements separately.

For instance in Listing 4, lines 3 and 5 for the ob-
ject just as lines 4 and 5 for the array would not form
DUCs when the elements are considered separately.
Instead only lines 1 and 5 just as lines 2 and 5 form
DUCs. However, if object and arrays are considered
as a whole, this can no longer be differentiated lead-
ing to new definitions of the object and array in lines
3 and 4. Thus, the DUC of lines 1 and 5 just as lines
2 and 5 are no longer considered.

3 IMPLEMENTATION

After explaining the fundamental concepts of the dy-
namic data flow, we will discuss the implementation
of Dacite. Our data-flow analysis is based on Java Vir-
tual Machine (JVM) bytecode. Thus, it can analyze
the data flow of Java programs but also of other pro-
gramming languages which can be translated to JVM
bytecode such as Kotlin and Scala. To be able to iden-
tify definitions and usages in bytecode, these occur-
rences have to be specified. In general, in JVM byte-
code, a definition occurs when a value is stored from
the operand stack into the variable table as is done,
e.g., by means of the bytecode instruction istore
for integer variables. Similarly, a usage is defined
as loading a variable onto the operand stack as is
done, e.g., using the instruction iload. Special cases
like storing a value into an array or object or load-
ing a value from an array or object to the operand
stack are also considered. When dealing with inter-
procedural analysis, variables passed on as parame-
ters are not considered definitions at the entry of the

called method or usages at the call site to account
for the inter-procedural data flow. However, param-
eters at entry points, e.g. main methods, are treated as
definitions when the code was called externally, i.e.
not within the custom classes. Similarly, passed vari-
ables to library functions or internal Java functions are
treated like usages at the call site (Santelices and Har-
rold, 2007). Before the implementation of the anal-
ysis can be explained, Section 3.1 first summarizes
how the DUCs are represented.

In order to implement the dynamic identification
of DUCs on the bytecode level, Java Instrumentation
with the open-source framework ASM1 is utilized.
This framework enables the modification of existing
classes in binary form before they are loaded into the
JVM. To be able to access the necessary informa-
tion during the program execution, methods tracking
the definition and usages of variables can be automat-
ically added by this instrumentation to the to be exam-
ined program code. These tracking methods then re-
trieve the necessary information during the execution
and pass it to the class DefUseAnalyzer which dy-
namically collects and analyzes this information and
derives passed DUCs. Hence, the dynamic data-flow
analysis consists of two steps, the bytecode transfor-
mation which is described in Section 3.2 and the anal-
ysis during the execution which is explained in Sec-
tion 3.3.

3.1 Representation of Data Flow

Before explaining how the relevant data-flow infor-
mation is collected throughout the execution, first, it
has to be defined which information is relevant. To
associate a definition to a usage, the corresponding
variable or element has to be uniquely identified. In
JVM bytecode, variables are identified by their in-
dex, i.e. the index with which they are stored in the
variable table. However, this index is not necessarily
unique due to compiler optimization. When a vari-
able is no longer used, the space in the variable table
is released, which may lead to the storage of a dif-
ferent variable for the same index. Hence, the index
of the instruction and the method are used addition-
ally to identify and associate definitions and usages
of variables. To enable users to relate the definitions
and usages to their program code, the corresponding
line number and variable name within the program
is stored for each definition or usage. Figure 1 de-
picts an overview of how the DUCs are represented
within Dacite. A definition or usage as described is
represented by the class DefUseVariable. A special
form of this is the definition or usage of an object field

1https://asm.ow2.io/

A Comprehensive Dynamic Data Flow Analysis of Object-Oriented Programs

269

2

*

DefUseChains

- defUseChains :
ArrayList<DefUseChain>

DefUseChain

- def : DefUseVariable
- use : DefUseVariable

DefUseVariable

- linenumber : int
- instruction : int
- varIndex : int
- value: Object
- method: String
- varName: String

DefUseField

- instance: Object
- instName: String

Figure 1: An overview of the DUCs implementation. Meth-
ods are omitted for the sake of clarity.

or an array element. For this purpose, a reference to
the related object or array has to be saved next to the
other information (see DefUseField). A DUC is rep-
resented by the class DefUseChain and consists of a
DefUseVariable instance for the definition and one
for the usage. DefUseChains is a wrapper class col-
lecting all passed DUC and contains custom methods
e.g. to find a variable usage with given arguments.

3.2 Bytecode Transformation

In order to automatically modify the classes of the
given program, a Java agent is utilized. This agent
is linked to the start of the program execution. This
class or set of classes is specified by the user to de-
termine the part of the program for which the data
flow shall be analyzed. This can be a single JU-
nit Test or a batch of tests. The start of the execu-
tion is also the start of the bytecode transformation.
When the JUnit tests are started, the Java agent in-
vokes a custom subclass DefUseTransformer of the
ClassFileTransformer. Here, method transform
is invoked for every class starting from the defined
JUnit test class. Within this method, the bytecode
transformation takes place to facilitate the tracking of
the relevant data-flow information. To avoid unnec-
essary overhead like analyzing internal Java classes,
only the classes defined by the user are transformed.

Starting from the bytecode of a class which is
given to the transform method, ASM is utilized to
transform the bytecode into a traversable structure
starting at a ClassNode. This ClassNode then refer-
ences different MethodNodes representing the meth-
ods of this class. For each MethodNode, first, the
given argument parameters are identified. As each
method parameter definition may represent a potential
definition of a variable, the relevant information has to

be passed on to the DefUseAnalyzer. This informa-
tion encompasses the current method name, the index
where this value is stored in the local variable table,
and the value of the parameter. To pass the informa-
tion to the DefUseAnalyzer, new bytecode instruc-
tions are added which push the information onto the
operand stack and afterwards, a method invocation to
the corresponding method of the DefUseAnalyzer is
added.

1 InsnList methodStart = new InsnList();
2 ...
3 boxing(types[typeindex],

localVariable.index, methodStart,
true);

↪→

↪→

4 methodStart.add(new
IntInsnNode(BIPUSH,
localVariable.index));

↪→

↪→

5 methodStart.add(new
LdcInsnNode(mnode.name));↪→

6 methodStart.add(new
MethodInsnNode(INVOKESTATIC,
"defuse/DefUseAnalyzer",
"visitParameter",
"(Ljava/lang/Object;I
Ljava/lang/String;)V", false));

↪→

↪→

↪→

↪→

↪→

7 ...
8 insns.insertBefore(firstIns,

methodStart);↪→

Listing 5: A Java code excerpt inserting bytecode instruc-
tions for method parameters.

Listing 5 shows an excerpt which adds the new
bytecode instructions. This is done by defining a list
of instructions (line 1) for which different instruction
nodes are added (lines 3-6), e.g. MethodInsNode
for a method invocation, and afterwards, this list is
added to the method instruction list (line 8). The
method boxing (line 3) is used to convert the vari-
able value based on its type to its corresponding Ob-
ject wrapper classes to adhere to the type specifi-
cations of the called method in line 6 and conse-
quently, to the implementation of the method within
the class DefUseAnalyzer. As mentioned before,
lines 3 to 5 are used to push the relevant information,
i.e. value, index, and method name, to the operand
stack. In line 6, the static method visitParameter
of the DefUseAnalyzer is invoked which takes the
three previously pushed values as method arguments.

After the definition of the method arguments, the
bytecode instructions of the current method are iter-
ated to find potential definitions and usages. Due to
the many different types of instructions, e.g. istore
or iastore, different approaches to retrieve the rel-

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

270

evant information are required. For instance, while
the istore instruction stores the index of the vari-
able within the instruction, iastore gathers this in-
formation from the operand stack. Moreover, to not
only account for objects and arrays as a whole but
their individual parts, e.g. when only a specific field
is defined and used, additional information including
the reference to the whole object next to the identi-
fier of the specific field needs to be forwarded to the
DefUseAnalyzer. Hence, these different types are
handled individually with corresponding method in-
vocations to DefUseAnalyzer fitting their informa-
tion.

In order to account for inter-procedural DUCs, at
each new method invocation it is tracked which values
are passed on from the current method to the invoked
method. As the variables may be differently named
and stored at different indexes in the variable tables
of the two methods, this information is necessary to
align the variables in the two methods. For instance,
in Listing 3 in Section 2 at the point in line 3, it has to
be stored that the variable x from method1 is equal to
the variable z to be able to later assign variable usages
of method2 to variable definitions in method1 assum-
ing no other definitions of z are made in method2.

When all MethodNodes of the class have been it-
erated and bytecode instructions accordingly added,
a ClassWriter is utilized to convert the modified
ClassNode into a byte array which is returned and
loaded into the Java Virtual Machine. Thus, the
program is executed with the method calls to the
DefUseAnalyzer gathering the relevant data-flow in-
formation.

3.3 Dynamic Analysis

As described previously, the DefUseAnalyzer is re-
sponsible for collecting and analyzing the necessary
data-flow information. The corresponding class is de-
picted in Figure 2. All fields and methods are static to
enable the analysis throughout multiple classes as the
bytecode transformation is performed for each class
individually. It can be seen that the DefUseAnalyzer
has three fields for collecting the information. The
field chains comprises all DUCs which were identi-
fied until the current execution point. This is repre-
sented as DefUseChains (see Figure 1). The second
field defs collects all variable definitions. As a DUC
is defined so that on the path from the definition to
the usage of a variable there is no other definition (see
Section 2), defs is implemented in such a way that
that the most recent definition comes first. This al-
lows for a quick allocation of a variable usage to its
most recent definition. The third field interMethods

DefUseAnalyzer

chains : DefUseChains
defs : DefSet
interMethods : ArrayList<InterMethodAlloc>

+ visitDef(value: Object, index: int, linenumber: int,
instruction: int, method: String, name: String): void
...

Figure 2: An overview of the implementation of the class
DefUseAnalyzer.

contains the allocation of variables passed on to meth-
ods as described in the previous section. A new allo-
cation is added every time for every parameter when
a method is invoked with the information from the
calling method, i.e. the passed variable and invoked
method name. Whenever a new method is entered,
interMethods is checked against the given parame-
ters and the information is complemented to allocate
both sides, the information at the calling method and
the invoked method.

Invocations to the methods were added to the in-
spected program at the appropriate positions during
the bytecode transformation. Each method then for-
wards its information for the analysis. For instance,
during the execution when the method visitDef is
invoked with the corresponding information, a new
definition is added to defs. Each time a new usage is
registered, the corresponding most recent definition is
retrieved and together they are added as a new DUC
to chains.

4 EVALUATION

In order to evaluate and validate the results of this
data-flow analysis tool, we executed it for a set of dif-
ferent examples. Eight examples are retrieved from
the SV-COMP set of software verification (Beyer,
2021). SV-COMP is an annual competition for soft-
ware verification that releases a publicly available
repository as a benchmark suite for verification and
validation software tools (Beyer, 2021).

We selected different types of algorithms, e.g.,
sorting, searching, highly conditional, and recursive
algorithms, to showcase the wide applicability of this
tool. Next to the example presented in this Sec-
tion, we utilized eight different examples from the
SV-COMP benchmark: The recursive Fibonacci al-
gorithm, recursive algorithms to determine if a given
number is even or odd and to check whether a num-
ber is a prime number. Moreover, a recursive algo-
rithm that determines the greatest common divisor for

A Comprehensive Dynamic Data Flow Analysis of Object-Oriented Programs

271

Table 1: Executed examples for the data-flow analysis. Run
times in ms without and with instrumentation.

Example without with
instrum. instr.

EvenOdd.evenOdd 4 151
Fibonacci.fibonacci 3 123
Hanoi.hanoi 3 145
InsertionSort.sort 2 177
SatPrime01.is prime 3 142
RecursiveGcd.gcd 19 169
EuclidianGcd.egcd 10 148
TspSolver.search 12 260
BinaryTreeSearch.search 5 241

two given numbers, a recursive implementation of the
Hanoi problem, and an insertion sort algorithm are
regarded. These examples exhibit intra- and inter-
procedural data flow as well as different data struc-
tures such as arrays. As more complex examples to
account for aliasing and data flow between different
classes, an implementation of the traveling salesper-
son and an implementation of the binary tree search
are given.

For all of the mentioned examples, JUnit test cases
were added for the execution. When executing Dacite
on these examples, overhead is introduced to the pro-
gram in form of additional instructions in order to col-
lect and analyze the data flow. Hence, it is reason-
able that the JUnit execution with Dacite takes longer
than the straightforward execution. In order to ana-
lyze this overhead, every example was executed with
and without Dacite and consequently, with and with-
out the instrumentation. The results can be seen in
Table 1. While the runtime of the execution with in-
strumentation is higher than without, it is still consid-
erably small ranging in milliseconds and thus, accept-
able when analyzing Java programs.

1 public int egcd(int a, int b) {
2 if (a == 0)
3 return b;
4 while (b != 0) {
5 if (a > b)
6 a = a - b;
7 else
8 b = b - a;
9 }

10 return a;
11 }

Listing 6: An implementation of the Euclidian greatest
common divisor.

As other data-flow analysis tools are either not

available or not working correctly, a validation of the
results was conducted manually. For each example,
the possible DUCs were derived by hand and com-
pared to the results of the dynamic analysis. For in-
stance, consider the implementation of the Euclidian
greatest common divisor in Listing 6.

This method has 18 possible DUCs as follows,
nine DUCs for the variable a and analogously, nine
for the variable b:

(a, egcd(int a, int b), if(a == 0))
(a, egcd(int a, int b), if(a > b))
(a, egcd(int a, int b), a = a−b)
(a, egcd(int a, int b), b = b−a)
(a, egcd(int a, int b), return a)
(a, a = a−b, if(a > b))
(a, a = a−b, a = a−b)
(a, a = a−b, b = b−a)
(a, a = a−b, return a)
(b, egcd(int a, int b), return b)
...

As explained previously, these DUCs are derived
manually. The only available and comparable static
tool Jabuti (Vincenzi et al., 2003) was able to ana-
lyze this program as well. However, the result was
not correct as it identified 23 DUCs. This highlights
again the missing existence of a tool that is able to re-
liably identify the data flow for a given program and
the added value this tool contributes.

Given a JUnit test case like in Listing 7, all
these DUCs are identified by the dynamic analy-
sis of Dacite. Moreover, when considering that the
method is called by another method (inter-procedural
data flow), this could result in DUCs no longer be-
ing traversable. For instance, if the calling method
limits the range of values of the variable a to a > 0,
then the condition in the first if-statement in line 2 will
never be true. Consequently, the DUC (b, egcd(int a,
int b), return b) is no longer traversable in context of
the program although the static analysis of the method
still yields this DUC. However, through the dynamic
analysis occurrences like this are not considered as
only traversable DUC are taken into account.

5 RELATED WORK

As already stated in the introduction, in contrast to
metrics such as branch coverage, there do not ex-
ist many tools to assess the data-flow coverage for
a Java program (Su et al., 2017). JaBUTi (Java
Bytecdoe Understanding and Testing), is one cover-
age tool that is able to identify data flow (Vincenzi
et al., 2003). It statically analyzes the JVM bytecode
to derive the DUCs. This is achieved by first con-

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

272

1 @Test
2 public void testGCD(){
3 int i = egcd(94, 530);
4 assertEquals(2, i);
5 int i2 = egcd(940, 530);
6 assertEquals(10, i2);
7 int i3 = egcd(4, 4);
8 assertEquals(4, i3);
9 int i4= egcd(0,2);

10 assertEquals(2, i4);
11 }

Listing 7: An exemplary JUnit test case for the method for
the Euclidian greatest common divisor in Listing 6.

structing a control-flow graph and then augmenting it
with the data-flow information (Vincenzi et al., 2006).
JaBUTi offers a graphical visualization of the iden-
tified data-flow graph and considers inter-procedural
data flow. However, it is not able to identify the data
flow of individual elements of objects and arrays, de-
tect aliases, or distinguish between traversable and
non-traversable DUC. As already mentioned in Sec-
tion 4, this tool also does not identify the def-use rela-
tions reliably, often identifying more DUCs than the
program actually has.

Another tool is DFC (Data Flow Coverage), which
is an Eclipse plug-in for analyzing the data-flow cov-
erage. Instead of completely deriving the data flow
automatically, this is done by interacting with the
user and inquiring first which methods modify object
states and which only use them. This information is
then utilized to statically constructs a def-use graph
(DUG) based on the source code. While this tool also
offers a simple graphical visualization of the DUG,
it does only focus on intra-procedural DUCs, regards
objects and arrays as a whole for the data-flow anal-
ysis (Bluemke and Rembiszewski, 2009). This tool,
however, is not publicly available.

DaTeC (Data flow Testing of Classes) focuses on
deriving data-flow information for integration testing
and thus, inter-procedural information across meth-
ods and classes. Therefore, the authors enhance the
definition-usage information by contextual informa-
tion containing a chain of method invocations that
led to the respective definition or usage. This is
achieved by statically analyzing the JVM bytecode.
While this tool regards objects and their fields in de-
tail for the data-flow analysis, arrays are treated as
a whole (Denaro et al., 2008). Since the tool is
based on a static analysis, it cannot distinguish be-
tween traversable and non-traversable DUCs. While
the source code of this tool is open-source, its depen-
dencies and code are outdated leading to a not exe-
cutable tool.

Another tool is DuaF (Def-Use Association
Forensics) (Santelices and Harrold, 2007). It stat-
ically analyzes the intra- and inter-procedural data
flow. Afterwards, the program is instrumented to be
able to monitor the identified data flow and then ex-
ecuted. Thereby, it offers the possibility to utilize
branch coverage to infer the covered DUCs to reduce
the overhead. For this purpose, the DUCs are catego-
rized during the dynamic monitoring into three cate-
gories, i.e. definitely covered, possibly covered, and
not covered. If the users want a more precise result,
they can also choose to directly monitor the identified
DUCs. As the analysis is performed statically, the
tool is restricted to the limitations of a static analysis
as mentioned before (Santelices and Harrold, 2007).
Although it is able to identify some form of aliases,
these are derived using approximations which leads
to a reduced precision in comparison with a dynamic
analysis (Pande et al., 1994; Denaro et al., 2014). This
tool, however, is also not publicly available.

These four tools are the more advanced and de-
tailed tools for statically analyzing the data flow.
There also exist some tools such as Jazz (Misurda
et al., 2005) or BA-DUA (de Araujo and Chaim,
2014) which derive the data flow more superficially.
However, all of them have some limitations due to
their static nature. Execution information like the
aliasing information cannot be accessed during static
analysis. Moreover, it is in general not possible to
distinguish between traversable and non-traversable
DUCs for static tools (Su et al., 2017). For instance,
in the field of test-case generation, this could lead to
time spent finding a test case for a DUC which is not
traversable during execution. On top of that, as could
be already noticed, all tools are either not available or
not working reliably.

To the best of our knowledge, there exists only
one tool which analyzes the data flow of a program
dynamically on the level of abstraction of static tech-
niques, DReaDs (Dynamic Reaching Definitions). As
the name suggests, this tool focuses on the variable
definitions and their reachability. Instead of identify-
ing variable usages and associating definition-usage
pairs, for each definition it is tracked to which exe-
cution the definition is propagated until it is eventu-
ally overridden. This impedes the comparability to
other data-flow test tools as the majority focuses on
the definition-usage data flow representation. More-
over, this tool only considers the data flow for class
state variables, i.e. class fields, and neglects all other
defined variables such as local variables defined in
methods (Denaro et al., 2014; Denaro et al., 2015).
Like most of the other tools, this data-flow tool is also
not publicly available.

A Comprehensive Dynamic Data Flow Analysis of Object-Oriented Programs

273

This demonstrates that to the best of our knowl-
edge our tool Dacite is the only tool that analyzes
the data flow of an object-oriented program consid-
ering the fields of objects and the elements of arrays
in detail, respecting aliasing, focussing on traversable
DUCs and hence providing a comprehensive data-
flow analysis.

6 CONCLUSIONS

In this paper, we have presented Dacite, a tool for a
comprehensive data-flow analysis for object-oriented
programs. This tool is able to dynamically analyze the
data flow of a given program and its JUnit tests. By
collecting the necessary information during the exe-
cution, more detailed and precise information such
as the occurrences of aliases can be derived. More-
over, we have argued that by dynamically analyzing
the program, only traversable data-flow relations are
identified. It is noteworthy, that all other existing tools
for analyzing the data flow of object-oriented pro-
grams only provide limited identification of the data
flow, being restricted either by static analysis or by
a specific type of variables (see Section 5). Further-
more, these tools are either not publicly available or
not working reliably. Consequently, to the best of our
knowledge, Dacite is the only available tool to pro-
vide a comprehensive and detailed data-flow analysis.
This can be utilized to evaluate and assess test suites
for object-oriented systems.

In the future, we plan to extend Dacite by graphi-
cal visualization of the DUCs to further facilitate the
comprehensibility of the passed data flow. Moreover,
by deriving the data-flow information during the exe-
cution, only those paths and their data flows are con-
sidered that have been passed. When comparing JU-
nit tests, this is sufficient. However, when generating
new Junit tests, it would be beneficial to also have in-
formation on which data flows have not been passed
yet. In order to ensure that all data flows are cov-
ered, Dacite can be combined with our existing test-
case generator (Winkelmann et al., 2022) which is
based on a symbolic execution of the classes under
test. Dacite can then be used to restrict the number
of generated test cases to those which are required to
ensure data-flow coverage.

REFERENCES

Allen, F. E. and Cocke, J. (1976). A program data flow
analysis procedure. Communications of the ACM,
19(3):137.

Beyer, D. (2021). Software verification: 10th comparative
evaluation (sv-comp 2021). Proc. TACAS (2). LNCS,
12652.

Bluemke, I. and Rembiszewski, A. (2009). Dataflow test-
ing of java programs with dfc. In IFIP Central and
East European Conference on Software Engineering
Techniques, pages 215–228. Springer.

de Araujo, R. P. A. and Chaim, M. L. (2014). Data-flow test-
ing in the large. In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Val-
idation, pages 81–90. IEEE.

Denaro, G., Gorla, A., and Pezzè, M. (2008). Contextual
integration testing of classes. In International Confer-
ence on Fundamental Approaches to Software Engi-
neering, pages 246–260. Springer.

Denaro, G., Margara, A., Pezze, M., and Vivanti, M. (2015).
Dynamic data flow testing of object oriented systems.
In 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, volume 1, pages 947–
958. IEEE.

Denaro, G., Pezze, M., and Vivanti, M. (2014). On the right
objectives of data flow testing. In 2014 IEEE Seventh
International Conference on Software Testing, Verifi-
cation and Validation, pages 71–80. IEEE.

Frankl, P. G. and Iakounenko, O. (1998). Further empiri-
cal studies of test effectiveness. SIGSOFT Softw. Eng.
Notes, 23(6):153–162.

Harrold, M. J. and Soffa, M. L. (1989). Interprocedual data
flow testing. ACM SIGSOFT Software Engineering
Notes, 14(8):158–167.

Majchrzak, T. A. and Kuchen, H. (2009). Automated test
case generation based on coverage analysis. In 2009
Third IEEE International Symposium on Theoretical
Aspects of Software Engineering, pages 259–266.

Misurda, J., Clause, J., Reed, J., Childers, B. R., and Soffa,
M. L. (2005). Jazz: A tool for demand-driven struc-
tural testing. In International Conference on Compiler
Construction, pages 242–245. Springer.

Pande, H. D., Landi, W. A., and Ryder, B. G. (1994). In-
terprocedural def-use associations for c systems with
single level pointers. IEEE Transactions on Software
Engineering, 20(5):385–403.

Santelices, R. and Harrold, M. J. (2007). Efficiently mon-
itoring data-flow test coverage. In Proceedings of
the twenty-second IEEE/ACM international confer-
ence on Automated software engineering, pages 343–
352.

Su, T., Wu, K., Miao, W., Pu, G., He, J., Chen, Y., and
Su, Z. (2017). A survey on data-flow testing. ACM
Computing Surveys (CSUR), 50(1):1–35.

Vincenzi, A., Wong, W., Delamaro, M., and Maldonado,
J. (2003). Jabuti: A coverage analysis tool for java
programs. XVII SBES–Simpósio Brasileiro de Engen-
haria de Software, pages 79–84.

Vincenzi, A. M. R., Delamaro, M. E., Maldonado, J. C.,
and Wong, W. E. (2006). Establishing structural test-
ing criteria for java bytecode. Software: practice and
experience, 36(14):1513–1541.

Winkelmann, H., Troost, L., and Kuchen, H. (2022).
Constraint-logic object-oriented programming for test
case generation. In Proceedings of the 37th
ACM/SIGAPP Symposium On Applied Computing,
pages 1490–1499.

ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering

274

