neural network architectures. IEEE Access, 6:64270–
64277.
Choudhary, O. P., Priyanka, Singh, I., and Rodriguez-
Morales, A. J. (2021). Second wave of COVID-19
in India: Dissection of the causes and lessons learnt.
Travel Medicine and Infectious Disease, 43:102126.
Department of Health (Philippines) (2022). COVID-19
Tracker.
C¸ elik, I., Saatc¸i, E., and Ey
¨
ubo
˘
glu, A. F. (2020). Emerg-
ing and reemerging respiratory viral infections up
to Covid-19. Turkish Journal of Medical Sciences,
50(SI-1):557–562.
Fauci, A. S. (2001). Infectious Diseases: Considerations
for the 21st Century. Clinical Infectious Diseases,
32(5):675–685.
Ge, S., Li, J., Ye, Q., and Luo, Z. (2017). Detecting masked
faces in the wild with lle-cnns. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 426–434.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,
Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadar-
rama, S., and Murphy, K. (2017). Speed/accuracy
trade-offs for modern convolutional object detectors.
In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3296–3297.
Inter-Agency Task Force for the Management of Emerging
Infectious Diseases (2021). Omnibus Guidelines on
the Implementation of Community Quarantine in the
Philippines as of September 23, 2021.
Jocher, G., Stoken, A., Chaurasia, A., Borovec, J.,
NanoCode012, TaoXie, Kwon, Y., Michael, K.,
Changyu, L., Fang, J., V, A., Laughing, tkianai,
yxNONG, Skalski, P., Hogan, A., Nadar, J., imyhxy,
Mammana, L., AlexWang1900, Fati, C., Montes, D.,
Hajek, J., Diaconu, L., Minh, M. T., Marc, albinx-
avi, fatih, oleg, and wanghaoyang0106 (2021). ul-
tralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models,
Roboflow integration, TensorFlow export, OpenCV
DNN support.
Lazaro, R. E., Tupas, E., Cabrera, R., and Villanueva, R. E.
(2020). Wearing masks now mandatory. Philstar.com.
Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path ag-
gregation network for instance segmentation. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8759–8768.
Loey, M., Manogaran, G., Taha, M. H. N., and Khalifa, N.
E. M. (2021). Fighting against covid-19: A novel deep
learning model based on yolo-v2 with resnet-50 for
medical face mask detection. Sustainable Cities and
Society, 65:102600.
Lopez, V. W. M., Abu, P. A. R., and Estuar, M. R. J. E.
(2021). Real-time face mask detection using deep
learning on embedded systems. In 2021 3rd Interna-
tional Conference on Electrical, Control and Instru-
mentation Engineering (ICECIE), pages 1–7.
Nowrin, A., Afroz, S., Rahman, M. S., Mahmud, I., and
Cho, Y.-Z. (2021). Comprehensive review on face-
mask detection techniques in the context of covid-19.
IEEE Access, 9:106839–106864.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alch
´
e-Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Petersen, E., Petrosillo, N., Koopmans, M., Beeching,
N., Di Caro, A., Gkrania-Klotsas, E., Kantele, A.,
Kohlmann, R., Koopmans, M., Lim, P.-L., Markotic,
A., L
´
opez-V
´
elez, R., Poirel, L., Rossen, J., Stien-
stra, Y., and Storgaard, M. (2018). Emerging infec-
tions—an increasingly important topic: review by the
emerging infections task force. Clinical Microbiology
and Infection, 24(4):369–375.
Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., and Sid-
dique, R. (2020). Covid-19 infection: Emergence,
transmission, and characteristics of human coron-
aviruses. Journal of Advanced Research, 24:91–98.
Skalski, P. (2019). Make Sense.
https://github.com/SkalskiP/make-sense/.
TensorFlow Developers (2021). Tensorflow. Spe-
cific TensorFlow versions can be found
in the ”Versions” list on the right side of
this page. See the full list of authors ”htt
ps://github.com/tensorflow/tensorflow/graphs/contr
ibutors” on GitHub.
Wang, C.-Y., Mark Liao, H.-Y., Wu, Y.-H., Chen, P.-Y.,
Hsieh, J.-W., and Yeh, I.-H. (2020). Cspnet: A new
backbone that can enhance learning capability of cnn.
In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages
1571–1580.
World Health Organization (2020). Mask use in the context
of COVID-19: interim guidance, 1 December 2020.
Technical documents.
Xu, R., Lin, H., Lu, K., Cao, L., and Liu, Y. (2021). A for-
est fire detection system based on ensemble learning.
Forests, 12:217.
Yang, S., Luo, P., Loy, C. C., and Tang, X. (2016). Wider
face: A face detection benchmark. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 5525–5533.
Zhou, X., Wang, D., and Kr
¨
ahenb
¨
uhl, P. (2019). Objects as
points. In arXiv preprint arXiv:1904.07850.
ICEIS 2022 - 24th International Conference on Enterprise Information Systems
470