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The explanation to an Al model’s prediction used to support decision making in cyber security, is of critical
importance. It is especially so when the model’s incorrect prediction can lead to severe damages or even
losses to lives and critical assets. However, most existing AI models lack the ability to provide explanations
on their prediction results, despite their strong performance in most scenarios. In this work, we propose
a novel explainable Al method, called PhilaeX, that provides the heuristic means to identify the optimized
subset of features to form the complete explanations of AI models’ predictions. It identifies the features that
lead to the model’s borderline prediction, and those with positive individual contributions are extracted. The
feature attributions are then quantified through the optimization of a Ridge regression model. We verify the
explanation fidelity through two experiments. First, we assess our method’s capability in correctly identifying
the activated features in the adversarial samples of Android malwares, through the features attribution values
from PhilaeX. Second, the deduction and augmentation tests, are used to assess the fidelity of the explanations.
The results show that PhilaeX is able to explain different types of classifiers correctly, with higher fidelity

explanations, compared to the state-of-the-arts methods such as LIME and SHAP.

1 INTRODUCTION

Explaining the prediction of an Al model is critical
for the Al-based solution to modern cyber threats that
have the properties of large volume and highly com-
plexity by the Al technology. The threat detection so-
lutions based on the learnable Al technologies, which
are so called shallow machine learning and recently
emerging deep learning methods, have demonstrated
astonishing performance today. However, the high
detection performance is insufficient in establishing
the trust from the users, since most models predict
the label of the suspicious sample, e.g., a malware or
a face image may be subjected to manipulation for
deception or obfuscation, through a complicated com-
putation process that people cannot understand. This
confidence crisis may become more severe when the
Al model makes an erroneous prediction that causes
damage or loss to the user’s properties, assets or even
safety. Therefore, the research on explainable Al that
quantitatively explains the Al model’s successful or
failed prediction for a particular input sample through
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the attribution of each data feature’s contribution to
the model’s prediction is highly desired (DoSilovi¢
et al., 2018).

Malware detection research has made progress
over the years. Demontis et. al. (Demontis et al.,
2017) improved the standard SVM on Android mal-
ware detection that further reduces the chance of eva-
sion by certain types of malware samples, through the
optmized selection method on the model’s parame-
ters. Zhang et. al. (Zhang et al., 2019) proposed
a malware detector using online learning technique
that is capable of adapting to the rapid evolving mal-
ware. Specifically, they combined the n-gram anal-
ysis and the online classifier techniques in the de-
tection. The application of the deep learning meth-
ods in cyber security threats detection recently, such
as CNNs (Amerini et al., 2019), RNNs (Giiera and
Delp, 2018), LSTM (Xiao et al., 2019a) or Trans-
formers (Devlin et al., 2018), is a breakthrough in
the detection rate (i.e, true positive rate). The deep
learning methods also save the hand-crafted and time-
consuming efforts on the selection or transformation
of the samples’ features through the automatic end-
to-end learning, which performance was highly based
on the experience and the domain knowledge of the
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developers (McLaughlin et al., 2017) (Yan et al.,
2018) (Xiao et al., 2019b) previously. However, it is
nearly impossible for humans to understand how the
deep learning models predict the class of the samples
by the non-linear computation process and millions
parameters among layers. The research effort on Al
models’ explanation is seldom considered in the de-
velopment of the machine learning algorithm.

Clearly, the AI model explanation is the posi-
tive direction to enhancing the users’ trust on the Al
model’s output, otherwise generated from a seem-
ingly black-box mechanism. Such explanation is
achieved through the quantification on the “contribu-
tion” of each feature to the model’s prediction. The
popular model-agnostic explainable Al methods that
can explain any Al model’s predictions, regardless of
the model’s type (such as SVM, CNNs or LSTM),
may not be working well for cyber security problems.
LIME (Ribeiro et al., 2016) builds a surrogate linear
model of the original model to be explained, where
the contribution of each feature is computed through
the optimization (Efron et al., 2004). The authors as-
sumed the linear model can be understood by humans
because of its simplicity and the data used to train
the linear model is manipulated by the local pertur-
bation of the features values in the input data sam-
ple. The fidelity of the linear model based explana-
tion may be deteriorated by the high dimensionality
of the data that is common in cyber security. Inte-
grated Gradients (IGs) (Sundararajan et al., 2017) at-
tributes the features as the model explanation through
the integration of the gradients on the model’s predic-
tions with respect to the input data with different fea-
tures values. These feature values are varied from the
“baseline” through a linear path, in which the base-
line refers to the zero-value feature vector or no signal
sample. The Integrated Gradients method works well
for the Al models with gradients, such as deep learn-
ing models. However, it cannot be used for certain
widely used models without gradients, such as Ran-
dom Forests (Apruzzese et al., 2020). In addition, the
baseline is unclear in certain fields, such as genomics
domain (Jha et al., 2020). Therefore, the explainable
Al method for the models used in the cyber security
field, such as malware detection, is still desired.

In this article, we proposed a novel model-
agnostic explainable Al methodology, called Phi-
laeX, that is capable of quantitatively measuring the
features’ “contribution” in a suspicious app sample,
when its class (i.e., benign or malware) is predicted
by a given Al model, regardless of the model’s type.
Specifically, the model explanation starts from core
features selection for a given suspicious sample, by
which only the features in the sample lead the model’s
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prediction towards to the border line of the two classes
(i.e., around 50% probability of the prediction con-
fidence by the model) are selected. Then, in addi-
tion to these core features, PhilaeX identifies a set
of features from the original data sample, in which
each feature is able to make the significant contribu-
tion for the model’s prediction towards the predicted
class on the original input sample. This step is to
identify the features with positive individual con-
tributions to the model’s predictions, without consid-
ering the contributions from the cooperation among
features. Finally, the feature attribution is obtained
by considering both the positive individual contribu-
tions and the joint contribution when all these features
are used. The quantitative measure on each feature’s
attribution is computed by optimizing a Ridge regres-
sion, because of its simplicity in optimization and the
nature of the optimization considers the highly cor-
related features. The main advantages of the pro-
posed explainable Al method include: (1) The iden-
tification of the core features provides a fingerprint
to further identify the candidate features with positive
contributions to the model’s prediction, in an efficient
and accurate manner, when compared to the random
perturbation of the sample’s values in feature space,
such as LIME; (2) The features attribution based on
the core features and those with positively individual
contributions considers both the individual and joint
contributions by the features; and (3) The optimiza-
tion by Ridge regression to quantify the features at-
tribution is efficient and effective. The results from
the quantitative assessment to the proposed explain-
able Al method show the high fidelity of explana-
tion by PhilaeX, regardless of the SVM (Arp et al.,
2014) (Lietal., 2015) and BERT (Devlin et al., 2018)
classifiers, on malware detection tasks. The first ex-
periment aims to identify the “activated features” in
adversarial samples of Android malware. This is to
help the cyber security practitioners to analyze how
the Al model was evaded by the adversarial samples,
and enhance the model’s security accordingly. The re-
sults demonstrate that the activated features have the
higher chance to be attributed with high values by Phi-
laeX, compared to the state-of-the-arts methods, such
as LIME, SHAP (Lundberg and Lee, 2017) and MPT
Explainer (Lu and Thing, 2021). The second experi-
ment that test the explanation fidelity when PhilaeX is
used to explain the SVM and Random Forest classi-
fiers on the PDF malware dataset (Smutz and Stavrou,
2012), where the results verifies that the high fidelity
can be obtained by a small number of the features with
the top attribution values by PhilaeX.

The rest of the paper is organised as follows: we
present literature review on the state-of-the-arts in ex-



PhilaeX: Explaining the Failure and Success of AI Models in Malware Detection

plainable Al in cyber security in Section 2. The pro-
posed methodology, PhilaeX, is introduced in details
in Section 3. We assess the fidelity of the proposed
method by two quantitative experiments in Section 4.
Finally, the conclusion of this methodology is dis-
cussed in Section 5.

2 LITERATURE REVIEW

The main aim of explainable Al is to provide a
human-understandable explanation on how the Al
model predicts the class label of the given sample.
One of the major research in explainable Al fo-
cus on the model’s interpretability (DoSilovié et al.,
2018), where the model’s prediction can be ex-
plained by its own prediction process, such as deci-
sion trees (Kaminski et al., 2018). However, as the de-
velopment of the machine learning and deep learning
methods advances, the model becomes increasingly
complicated such that the computation is not visible
for the users, and it is difficult to achieve the model’s
interpretability (Molnar, 2019).

The post-hoc explainable Al methods that obtain
the model’s explanation by analyzing the model’s in-
put and output in a qualitative or quantitative way,
therefore, attracts the major research interests. The
early research on post-hoc explaination method were
focusing on the model-specific explainable Al meth-
ods, where it is only able to explain the targeted type
of Al models. Zeiler et. al. (Zeiler and Fergus, 2014)
proposed a qualitative explanation method through
the visualization and observation on the neurons in
a convolutional neural networks (CNNs) that shows
how each neuron responds to different data instances.
In (Xu et al., 2015), Xu et. al. developed a caption
generator model to summarize the content of an im-
age in one sentence, where the attention mechanism
in the deep neural networks highlights the sensitive
part of the image and its corresponding words in the
caption. DREBIN (Arp et al., 2014) provided a lim-
ited explanation of the Android malware detector’s
prediction based on SVM classifier. However, their
explanation method cannot be extended to other Al
models, since the quantification of features attribution
comes from the weights of the SVM models. Thus,
the model-specific explainable Al methods lack the
ability to extend to new types of Al models, because
of its inherent nature.

As the machine learning techniques develop
rapidly, explainable Al methods that can explain dif-
ferent types of Al models is highly desired. This prop-
erty is also referred to as model-agnostic. Samek et.
al. (Samek et al., 2017) firstly proposed the expla-

nation methods using layer-wise relevance propaga-
tion (LRP) to analyze the sensitivity between the deep
learning models’ prediction w.r.t. the input sample
in the features space. Their work forms a foundation
in model-agnostic explainable Al methods, where the
model explanation was obtained by the “observation”
on the relations between the input and model’s output.

As the model structure becomes too complicated
to be accessed by humans, the directly observation
on the model’s input and output also become a time-
consuming and inaccurate way to obtain the expla-
nation. Therefore, the alternative way to obtain the
model explanation is to explain the surrogate model,
which simulates the behavior of the original model to
be explained, and is usually simple enough for hu-
man understanding. LIME (Ribeiro et al., 2016) is
proposed to explain any type of classifiers by learning
a linear surrogate model to mimic the target model’s
behavior. The data to train such linear model are gen-
erated through perturbation of the original input data
sample around the model’s predictions (i.e., local per-
turbation). However, the linearity of the surrogate
model and the random perturbation strategy in the lo-
cal field limits the explanation capability of LIME,
especially when it explains complicated models, such
as CNNs. Our PhilaeX provides a high fidelity expla-
nation for complicated models through a multi-stage
selection strategy for high contribution features. This
solves the limitation of the local random perturbation
in the sample’s feature space, such as non-stable ex-
planation. Wu et. al. (Wu et al., 2018) used decision
tree, which is a self-explained model, as the surrogate
model in the explanation of the deep learning models
Recently, LEMNA (Guo et al., 2018) was proposed to
explain the Al models that are specifically designed
for cyber security problems. LEMNA uses the fused
lasso (Tibshirani et al., 2005) algorithm and mixture
regression model (Khalili and Chen, 2007) to force
the explanation to consider the dependencies among
features, which solves the issues of linear approxi-
mation that considers nothing about the dependencies
among features in LIME.

3 PhilaeX: EXPLAINING
MODEL’S PREDICTIONS

In this section, we firstly formulate the model’s ex-
planation problem as the feature attribution process in
mathematics. The algorithms to identify the core fea-
tures and the features with positive individual contri-
butions are introduced. Finally, we present the op-
timization process to obtain the features attribution
by considering both the features’ individual contribu-
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tions and their joint contributions towards the model’s
prediction on the input sample.

3.1 Problem Statement

Given a classifier f(x) — [0,1]/°! to be explained, and
its predictions of the probabilities of |C| class labels
for the input data sample x = (x1,x,...,X,) € R™ (in
the features space), the data sample x € R™ consists
of m features. For example, the suspicious Android
app can be represented in the features space by the
TF-IDF (Rajaraman and Ullman, 2011) values of its
permissions (Arp et al., 2014). The aim of the model
explanation is to find the optimized features attribu-
tion vector A = (aj,ay,...,a,) € R™ that quantita-
tively measure how the model to be explained f(x)
makes the prediction of the input sample’s class label
according to each features contributions. That is, the
optimization can be formally represented by:

A = argminy:(g(h(x),w) — f(x)) (D
where g(+) € @G is the surrogate model to the orig-
inal classifier f(), which aims to mimic the predic-
tions as f(x) for the same sample x, and the weights w
measures the joint contributions by the features in this
surrogate model. The selection function /(x) returns
the optimized features set x* that make the significant
contributions to the model’s predictions, given sample
x. The attribution vector A is obtained only if the min-
imized difference between the surrogate model g(x)’s
prediction and that of the original model f(x) to be
explained is obtained. Therefore, the choice of the
surrogate model and the features x* that their attri-
butions are computed is critical to the explanation fi-
delity on the model’s prediction behavior on the sam-
ple x.

In the remaining part of this section, we will in-
troduce our proposed model explainer, PhilaeX, that
starts the features attribution vector construction for
the input sample x = (x1,x2,...,x,) € R™ from an
empty vector (i.e., Null). The whole construction pro-
cess consists of two major stages: (1) The features se-
lection strategy, i.e., h(x) € R",n < m, that picks up
the features with the significant contributions towards
the model’s prediction on x is selected; (2) The quan-
tification of the contribution for the selected features
through a Ridge regression that is the surrogate model
to the original model f(x).

3.2 Core Features

The perturbation of the features values to obtain the
synthetic input data samples X' in the training of the
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surrogate model g(X') may not work well in the cy-
ber security field. In LIME (Ribeiro et al., 2016),
the response of the model to the changes of the input
variables is obtained by random perturbation of the
input sample’s feature values in a small range. This
can allow a fast preparation of a large amount of syn-
thetic data to train the surrogate linear model and help
the explainer to attribute the model’s behavior accord-
ingly. However, it can also lead to the shortage of
stable explanation that the features attribution values
may vary a little among different times of explanation,
given the same input sample. In addition, the pertur-
bation strategy on features magnitude to generate the
synthetic data to train the surrogate model may not
work well in the cyber security field. For example,
the normal way to camouflage the malware to evade
the Al detector is to “add” a certain types of permis-
sion in the app, where the small perturbation of the
features values is not impossible.

In PhilaeX, the features selection function /(x) €
R" )n < m is to pick up the subset of the features
from the input sample x that is optimized to describe
(i.e., explain) the model’s prediction behavior. Specif-
ically, there are two steps to obtain the candidate fea-
tures for attribution, which are core features and fea-
tures with positive individual contributions, respec-
tively. The first step is to identify a set of core fea-
tures X, = {x; € x} from the original sample x, which
are the base of the sample x that leads the model
f(x¢) :— 0.5 (i.e., the boarder line of the prediction).
We assume that the model f(x.) make a “hesitated”
decision for the sample with such core features only,
where the model has around 50% confidence on its
prediction of the sample’s class, and the actual pre-
diction on the original input sample f(x) is made by
the joint contribution from both the core features and
part of the remaining features.

In order to obtain the core features for the given
sample x, we start from an empty feature vector that
contain no feature. The following steps are to find out
the candidate core features in a recursive way, where
the target is to find the subset of features that leads
the model f(x.) :— 0.5 as close as possible (i.e., the
local minimum of the abs(f(x.) —0.5). The detailed
algorithm about core features identification are in Al-
gorithm 1.

3.3 Features Individual Contributions

Once the core features X, is obtained, we are looking
for the features that can increase the prediction con-
fidence of the model toward the prediction score on
the original sample x. Formally, we define the acqui-
sition of such features with positive individual contri-



PhilaeX: Explaining the Failure and Success of AI Models in Malware Detection

Algorithm 1: Core Features Selection.

Input : Input sample: x and model to
explain: f(-)
MAX_LEN_CORE_FEATURES -
maximum number of core features

Output: Core features: x;

1 min_prediction_score_gap = 1
Xy = Null
while
||xs]| < MAX_LEN_CORE _FEATURES do
4 Pick up x; €x
if || f(xs+x;) —0.5]| <
min_prediction_score_gap then
| X=Xy

w N

wn

7 end
8 return The selected core features xg

butions, i.e., Xp, as:

argminy, x\x, (f (e +x) — f(x)) 2

where the symbol “+” means the concatenation

of two features vectors, i.e., X, and x,,. The candidate

features set is initialized as x, = ¢. For every feature

xi € x\X, that is added into x,, the model’s prediction
on f(Xc +xp :— f(x).

The aim is to identify the features in the input sam-
ple x to enhance the confidence of the model signifi-
cantly when it outputs the prediction of the input sam-
ple. Accordingly, those features that lead the model to
the opposite of the prediction on the sample x will be
ignored.

3.4 Quantify Joint Contribution by
Features

The features we picked up from the previous steps,
i.e., the core features x, and the features with posi-
tively individual contributions x,, form the set of the
candidate features, where features attribution by Phi-
laeX will be applied. There are two reasons that we
only attribute the subset of features in the input sam-
ple x: (1) The features attribution on such features
Xy = X. + X, allows the explainer to reveal the ma-
jor reason that the model made the prediction on the
original sample x. As the discussion in Section 3.3,
it is not always true for all features in the sample x
that make positive significant contributions towards
the model’s prediction of the class label on the sam-
ple. (2) The explanation on such subset of features
will be more efficient that that on the all the features
of the input sample x.

The joint contributions made by the cooperation
among these features are the necessary to form the
complete quantitative explanation (i.e., features attri-
bution) for the model f(x), which have not yet been
considered by the previous two steps in Section 3.2
and Section 3.3. In this step, we quantify each fea-
ture’s contribution to the model’s prediction by train-
ing a Ridge regression model g(-) as the surrogate
model to the original model f(-), where the weights of
each feature in the regression model are considered as
the features attribution. The reason we use the Ridge
regression as the surrogate model is for its simplicity,
efficiency and its nature for estimating the coefficients
(i.e., weights) where independent variables are highly
correlated (Hilt and Seegrist, 1977).

Specifically, the weights w € RIXl in Ridge re-
gression can be estimated by the optimization of the
following equation:

argminy (|ly = Xwl[3 +ox [[w|5) ()
where the L2 regularization applies to reduce sen-
sitivity to single feature and accordingly decrease the
possibility of overfitting in the model training.
Finally the features attribution vector is defined as
A = w that considers both the individual contribution
from each features and the joint contributions from
the cooperation among these features X;.

4 EXPERIMENTS

In this section, we assess the explanation capabil-
ity of PhilaeX through two quantitative experiments.
The proposed explainer will be used to explain the
prediction behaviors of three classical classifiers, in-
cluding SVM, Random Forest and BERT, which in-
clude the AI models in both the shallow (classical)
machine learning and deep learning fields. There
are two datasets are used in our experiments. The
datasets are DREBIN (Arp et al., 2014) dataset for
Android malware detection task and the PDF mal-
ware dataset (Smutz and Stavrou, 2012) for PDF mal-
ware detection. The explanation performance will be
evaluated quantitatively in terms of the explanation
fidelity in two tasks, which are the activated features
identification for adversarial samples of Android mal-
ware and the deduction/augmentation tests for PDF
malware samples.

4.1 Dataset
We use two datasets in the evaluation on the ex-

planation fidelity by PhilaeX. The first dataset,
DREBIN (Arp et al.,, 2014), was used to test a
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lightweight Android malware detector, where the fea-
tures of the suspicious Android apps were extracted
from the application’s manifest file AndroidMani-
fest.xml and disassembled dex code from the byte-
code by the static analysis technique. The features
that DREBIN extracted fall into 8 categories, like
requested permissions, restricted API calls and net-
work addresses, etc. In the DREBIN dataset, there
are 5,560 Android malware apps and 123,453 non-
malware apps in total. However, in our experiments,
we randomly selected 5,555 malware samples and
5,555 non-malware apps, in order to build a balanced
dataset for the model’s training. Further, the dis-joint
training set and testing set used in the evaluation are
built through a random split of these 11,110 samples,
which generates a training set of 7,442 samples and
a testing set of 3,668 samples. For each sample, the
text features data in a sample will be converted into
the features vector in the form of floating numbers.
Specifically, all the features in the training dataset will
be encoded by the #f-idf algorithm (Rajaraman and
Ullman, 2011), that measures the importance of each
feature in the dataset. The dimension of the features
vector is 43,157, which is high dimension.

The second dataset used in the experiments is the
PDF malware dataset (Smutz and Stavrou, 2012) that
has 4,999 malicious samples and 5,000 benign sam-
ples. We use the 135 features suggested by (Guo et al.,
2018), where the features have been encoded into bi-
nary (i.e., 0 or 1) values.

4.2 Al Models to be Explained

We test the explanation capability of PhilaeX for dif-
ferent AI models that cover the shallow (classical)
machine learning and the recent emerging deep learn-
ing models. First, we trained a SVM (Arp et al.,
2014) (Zhao et al., 2011) (Li et al., 2015) model,
which is a classical shallow machine learning model
and has been widely used as the classifier for binary
classification tasks before the deep learning methods
dominate this field. For a given sample in the feature
space, SVM maps the relatively low dimension data
into a high-dimension space such that the separation
between two classes becomes more apparent, and thus
is able to predict the sample’s class more accurately.
Specifically, we trained a SVM model with the
Radial basis function (RBF) kernel (Vert et al., 2004),
where the parameter that defines the inverse degree
of the influence by a single training sample 7 is set
to 1.0. We trained two SVM classifiers for the An-
droid malware detection task on the DREBIN dataset
and the PDF malware detection task on the PDF mal-
ware dataset. In the remaining part of this section, we
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will use PhilaeX to explain the prediction behavior of
these two classifiers (i.e., AI models).

In addition, we also trained a deep learning model
for the Android malware detection task. BERT (De-
vlin et al., 2018), the transformer-based classifier that
was proposed by Google for natural language pro-
cessing (NLP) tasks in 2018, is used to classify the
Android malware in the DREBIN dataset. We use
the BERT implementation from HuggingFace Trans-
formers library (Wolf et al., 2019) that is not sensitive
to the letters case and the default parameters, such as
the maximum length of text (128) and the learning
rate (4e-5). There are 8 samples used in a single batch
and 5 epochs were running in the training process of
the BERT model. We trained a surrogate SVM model
to the BERT Android malware detector in the model
explanation, in order to avoid the complicated word
embedding mechanism that converts the text tokens to
numerical representations. Such surrogate SVM has
highly similar prediction behavior as the BERT, given
the sample input sample, where the TPR = 0.9984 and
FPR = 0.0029.

Both the trained SVM and BERT models used
in the Android malware detection tasks present good
performance. The true positive rate (TPR) for both
classifiers are around 0.96 with a 0.04 false positive
rate (FPR). In addition, we also trained a separate
SVM classifier and Random Forest classifier for the
PDF malware detection task, which uses the default
parameters.

4.3 Explaining Evasion Attack by
Adversarial Samples

We firstly evaluate the explanation capability of Phi-
laeX on how the adversarial samples of Android mal-
ware evade the trained malware detector (that was
with high TPR and low FPR on DREBIN dataset) in
quantitative way. In the evasion attack, we assume the
attacker has full knowledge of the features space and
access to the model’s prediction score. That is, the
attacker is able to manipulate the data sample, which
class is to be predicted by the SVM or BERT classi-
fier, such as adding the features in the sample.

In this experiment, we only add (i.e., activate) the
“permission” features to the existing sample’s fea-
ture vector of Android malware, because such addi-
tion operation will not change the functionality of the
original malware (Liu et al., 2019). One adversarial
sample is generated by Genetic Algorithm that is ex-
tended from (Liu et al., 2019) and the optimised set of
“permission” features is selected to help the original
sample bypasses the malware detection by the clas-
sifier. Specifically, in the Genetic Algorithm, the fit-
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ness value is defined by the model’s prediction score
towards the non-malware class of the candidate ad-
versarial sample. The convergence of the algorithm
is fulfilled if (1) the Genetic Algorithm that has been
running for 500 loops that has a high possibility to
make the evasion attack by the adversarial samples
successful; (2) the prediction score towards the non-
malware class stay the same at a high level for at least
10 times; or (1) the fitness value is larger than 0.99
which implies the model has extremely high confi-
dence on its incorrect prediction for the adversarial
sample. In total, there are 200 malware samples from
the testing set randomly selected as the seeds to gener-
ate the adversarial samples. The adversarial samples
dataset used in the explanation for SVM has 499 sam-
ples. In the explanation for BERT, there are dis-joint
500 samples used.

The aim of the evaluation is to observe the capa-
bility of the model explanation by PhilaeX in terms of
the percentage of “good” explanations. An adversar-
ial sample has a “good explanation”, only if a certain
number of the activated features in this sample are at-
tributed with positive values. A high number of “acti-
vated features” are identified in terms of their attribu-
tion values and means that the model explanation ver-
ifies the assumption that the model is evaded because
of the activated features in the adversarial sample.

In the experiment, we compare the explanation
capability of PhilaeX against LIME (Ribeiro et al.,
2016), SHAP (Lundberg and Lee, 2017) and MPT ex-
plainer (Lu and Thing, 2021). The reasons that we
use these three explainable Al methods as the base-
line are: (1) LIME is a popular explainable AI method
that explains the models by learning a linear surro-
gate model. (2) The explanation generated by SHAP
is based on the computation of Shapley value (Roth,
1988), which concept has been widely used in coop-
erative game theory. (3) The recently MPT explainer
is based on the modern portfolio theory (Markowitz,
1952) that was proposed in economics to allocate the
investment to different assets for a maximum return
with minimum risk. In the evaluation, we vary the
threshold of the “good explanation” from 0% acti-
vated features in the adversarial samples identified to
90% activated features identified. This allows us to
observe the robustness of the explanations from dif-
ferent explainable Al methods. In Fig 1, it shows Phi-
laeX can identify more activated features from the ad-
versarial samples compared to LIME, MPT explainer
and SHAP, when the same threshold of “good expla-
nation” is used and the threshold value is less than
40% in SVM and 20% in BERT. In addition, Phi-
laeX’s explanation shows much robustness that is ver-
ified by the slower decreasing curve, compared to
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(b) “Good explanation” Percentage for BERT

Figure 1: “Good Explanation” Comparison The number
of “good explanations” by PhilaeX stays in a high level (i.e.,
nearly 100% in SVM), when the threshold of “good expla-
nation” is less than 40%. This also shows the robustness of
the explanation by PhilaeX, compared to the other explain-
able Al methods.

SHAP and MPT explainer. This conclusion still holds
true when we compare the robustness of PhilaeX and
LIME, considering the unstable explanation in LIME
that is caused by the random perturbation on the fea-
tures’ values.

In the explanation of BERT, PhilaeX shows slight
lower ratio of “good explanations”, when the thresh-
old of “good explanation” is less than 30%. This is
possibly because BERT considers more joint contri-
butions among the features that reduces the effect by
single features accordingly. However, we see that
PhilaeX still presents a relatively robust explanation
capability among these explainable Al methods, be-
cause of its slower curve decline.

4.4 Explaining PDF Malware Detector

In the fidelity test, the aim is to evaluate if the ex-
plainer attributes high values for the features that
has high impact on the model’s prediction behavior.
Specifically, there are two kinds of tests we used in the
experiments: (1) Deduction test that removes a cer-
tain number of features with high attribution values
will lead the model to predict the manipulated sam-
ple as the opposite class. That is, the less such high
attribution value features are removed, the higher the
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Figure 2: Fidelity Test In the deduction test results (a) and (b), PhilaeX shows higher fidelity of explanation for both Random
Forest and SVM classifiers, where the PCR value of deduction test should be as lower as possible. In the augmentation test,
PhilaeX shows higher PCR values (better) for both Random Forest and SVM classifiers, when a small number of features

used (i.e., < 30 features in RF and < 50 features in SVM).

explanation fidelity. For example, the SVM model
predicts a manipulated sample of malware as non-
malware, if the feature with the top attribution value
is removed. This means that this feature is correctly
attributed in the explanation; (2) In Augmentation
test, we activate a certain number of features in a non-
malware sample. These features are from a malware
sample and are attributed with high attribution values
in the model explanation on this malware sample. It
is expected that the model’s prediction on the manip-
ulated non-malware sample as malware, if the expla-
nation is correct. That is, the correctly attributed fea-
tures in a malware sample may have strong individual
impact on the model’s prediction behavior that lead
the model towards the malware class.

We use the positive classification rate (PCR) (Guo
et al., 2018) as the evaluation metric to quantify the
fidelity of the explanations. The PCR is defined as the
ratio of samples which retains their original class after
the manipulation through deduction or augmentation.
The PCR in an explanation with high fidelity will be
as low as possible through a deduction test, and as
high as possible by the augmentation test.

In this experiment, we test the explanation fidelity
by PhilaeX, when it is used to explain the Random
Forest and SVM classifiers on the PDF malware de-
tection task. In Fig. 2a and Fig. 2b, we can ob-
serve that for both RF and SVM, PhilaeX has a sig-
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nificant higher fidelity explanation than that of MPT
explainer, which are measured by the lower PCRs.
This finding verifies that the features selection func-
tion A(x) in Section 3 guarantees the following fea-
tures attribution to assign high attribution values to
the important features. In addition, the high fidelity
(in terms of PCR) is stable although the number of
features used is increasing. This means that PhilaeX
is more capable of identifying the important features
(by attributing it with higher value) than that of MPT
explainer.

In Fig. 2c and Fig. 2d, the features with high at-
tribution values by PhilaeX will generally guarantee
a high PCR for both RF and SVM, when the number
of features used are small. However, the PCRs for
PhilaeX are getting lower than that of MPT explainer
when around 50 and more features are used in the aug-
mentation test. This is probably due to the joint con-
tribution by all the features becoming stronger as the
number of features used increases.

4.5 Running Time Performance

The average running time to explain the SVM’s pre-
diction on a single data sample of Android malware
apps is around 6.37 seconds, compared to the MPT
explainer with around 15.44 seconds. This is prob-
ably due to the efficient the optimization process of
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Ridge regression.

5 CONCLUSION

In this article, we presented a novel model-agnostic
explainable Al method, PhilaeX, that is featured by
the features selection strategy and more suitable to
explain the Al models used in cyber security tasks.
The explanation is in the form of features attribution
for machine learning classifiers. This method has a
multi-stage feature selection function that identifies
the candidate features to be explained: (1) the core
features to find the features that lead the model to
make a borderline prediction; (2) the features with
positive individual contributions towards the model’s
prediction on the original sample to restrict the ex-
plainer to focus on important features’ attribution,
which is helpful in revealing the model’s behavior in
a more accurate way; and (3) the Ridge regression
model as the surrogate model quantifies the contri-
butions of these features, considering the joint con-
tributions made by them. The explanation fidelity
of the proposed method is evaluated by two experi-
ments. The first experiment aims to find the activated
features from the adversarial sample of Android mal-
ware, through the attribution values (positive values)
by PhilaeX. The results shows PhilaeX has higher ca-
pability of the identification on such activated fea-
tures than those by LIME, SHAP and MPT Explainer.
The second experiment consists of two fidelity tests,
which are the deduction test and augmentation test.
In the deduction test, PhilaeX has significantly higher
fidelity explanations than that of the MPT explainer.
The augmentation test reveals that PhilaeX has higher
PCRs when a small number of features used. Both
experiments results show that PhilaeX can be helpful
for explanation of the Al models, such as those used
in the cyber security field.
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