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Abstract: During the past decade, 3D simulation models have gained importance in the development of software 
solutions that aim to mimic real-world events and phenomena with increasing levels of accuracy and detail. 
In this paper, we introduce VOWES, a Virtual Outdoor Weather Event Simulator to replicate and measure 
outdoor weather events in vivid 3D visualizations. We make use of the Unity 3D engine to build the simulator 
environment and its virtual sensors, and integrate the Mapbox SDK and the WeatherStack API for realistic 
real-world weather mapping. We have conducted a large battery of experiments involving 30 human testers, 
considering various evaluation criteria. Results highlight VOWES’ quality and performance, and its ability to 
simulate complex weather environments with large numbers of sensors and weather phenomena.

1 INTRODUCTION 

With the rising interest in creating realistic and vivid 
simulations, 3D models have been gaining increasing 
importance in the development of software solutions 
that aim to mimic real-world events and phenomena. 
Simulation modelling allows creating and analysing 
the behaviour of a digital prototype system 
representing a physical real-world entity, aiming to 
study and predict the latter’s behaviour and 
performance in the real-world (Garcia-Dorado I. et al. 
2017). Simulation software has become one of the 
most commonly used techniques for virtual 
demonstrations in different fields, especially 3D 
models used to simulate real-world structures, 
objects, and events, with increasing levels of accuracy 
and detail, e.g., (Li X. et al. 2019, Zigon B. et al. 
2018, Garcia-Dorado I. et al. 2017). 

In this paper, we introduce VOWES, a Virtual 
Outdoor Weather Event Simulator to represent 
outdoor weather events and data in vivid 3D 
visualizations. It is designed as a digital twin solution 
to describe and replicate weather measurements, 
events, sensors, and their properties from the real-
world, into a software simulation environment. We 
make use of the Unity 3D engine to build and design 
the simulator environment and its virtual sensors. We 
develop special visualizations and behaviours to 
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present weather measurements, events, and sensors as 
visible 3D structures with specifications controllable 
by the user. We utilize the Mapbox SDK (MapBox 
2021) to import high-resolution world maps showing 
countries, cities, and buildings. In addition, we utilize 
the WeatherStack API (WeatherStack 2021) to 
capture real-time weather measurements and 
conditions from the geographic area that is being 
simulated and integrate them in the simulation 
environment to allow for more realistic and accurate 
simulations. Qualitative and performance evaluations 
highlight the potential of the tool. 

In the following, Section 2 reviews related 
works. Section 3 describes the VOWES simulation 
tool. Section 4 describes the experimental evaluation, 
before concluding in Section 5 with future directions. 

2 RELATED WORKS 

With the rising interest in creating realistic and vivid 
models, Unity 3D has been gaining increasing 
importance as a powerful tool for the creation of 3D 
visualizations, functions, and attributes, and their 
integration with dedicated processing features and 
metric measurements to achieve accurate outputs and 
analyses. Unity is a cross-platform game engine 
developed by Unity Technologies, which was 
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announced and released in June 2005 at Apple Inc.'s 
Worldwide Developers Conference as a Mac OS X-
exclusive game engine. Starting in 2018, the engine 
has been extended to support more than 25 platforms 
for creating two-dimensional (2D), three-dimensional 
(3D), augmented reality, and virtual reality games. 
Also, the Unity engine has been used for simulations 
in various fields including architecture, engineering, 
automotive, and construction, e.g., (Sanders B. et al. 
2020, Sun L. et al. 2020, Wang R. et al. 2020). One 
of its distinctive features is the power of its real-time 
3D rendering, making it one of the world’s leading 
real-time development platforms (Unity). 

In this context, several Unity 3D-based 
simulation solutions have been developed in the 
literature. In (Wazir H. and Annaz F. 2015), the 
authors design a Unity-3D simulator to help navigate 
unmanned aerial vehicles (UAVs). The latter is 
coupled with sensors and physical hardware allowing 
to collect data from the UAV’s surrounding 
environment and feeding it into the virtual simulation 
for processing and analysis. The authors emphasize 
the importance of Unity 3D in presenting a realistic 
and precise model while tracing the performance of 
UAVs in the real-world. In (Buyuksalih I. et al. 
2017), the authors develop a Unity 3D virtual 
environment to study the properties and potential 
prospects of using solar energy on buildings in a 
highly populated urban area. They mimic building 
structured using dedicated 3D visualizations, and 
mimic solar energy measurements based on values 
and calculations accumulated from a real world urban 
area in the city of Istanbul. The authors specifically 
address the challenge of attaining high accuracy in 
predicting solar energy outcomes with the influence 
of the buildings’ shadow casting. The authors extend 
their simulated environment to represent and study 
the underground utility systems in the city, where the 
whole city map is translated into a dedicated 
underground 3D model. In (Jain V. and Mahdavi A. 
2016), the authors design and integrate virtual sensors 
to measure light conditions in both indoor and 
outdoor environments. They focus on monitoring 
daylight conditions and design artificial light sources 
to map different sunlight conditions in the real world. 
They accumulate measurements from real sensors 
and map the data to the virtual sensors to create 
realistic conditions in the virtual environment. The 
authors utilize dedicated CAD software to create both 
indoor and outdoor environments with high degrees 
of precision and accuracy. Unity 3D is used to 
animate the CAD environment and handle light 
condition variations and sensor simulations. In 
(Wazir H. and Annaz F. 2015), the authors show how 

environmental events, such as fire, can be 
demonstrated in a 3D manner. They attempt to imitate 
real-life scenarios and study the level of stress that 
different people might face in simulating different 
kinds of fire events. The authors highlight the 
capabilities of Unity 3D in visualizing and animating 
complex objects and events such as fire, flame, 
smoke, and their propagation.  

3 VOWES SIMULATION TOOL 

We design and develop our VOWES simulation tool 
using the Unity 3D game engine to build the 
environment and its virtual sensors, and integrate 
them with real-world 3D maps and a weather API for 
realistic weather mapping. We develop special 
visualizations and behaviours to present weather 
measurements, events, and sensors as visible 3D 
structures with specifications controllable by the user. 
The following subsections describe the main 
components of our simulator tool. 

3.1 Virtual 3D World 

To achieve a realistic 3D simulation of outdoor 
environmental events and measurements, we use 
Unity’s flexibility in integrating third-party APIs to 
acquire dynamic 3D maps and real-world weather 
measurements. More specifically we utilize the 
Mapbox SDK (MapBox 2021) to import high-
resolution world maps showing countries, cities, and 
buildings, and we integrate the WeatherStack API 
(WeatherStack 2021) to capture real-time weather 
measurements and conditions from the geographic 
area that is being simulated. 

Mapbox offers APIs, SDKs, and live-updating 
map data, allowing to build better mapping, 
navigation, and search experiences across different 
platforms (MapBox 2021). We utilize the Mapbox 
SDK to import the 3D maps of real-life cities and 
allow the user to explore and visualize those cities 
from within the Unity 3D environment, with high 
levels of detail, where particular locations or 
buildings can be easily leveraged for procedurally 
generating user-specific experiences or styling. Users 
are prompted to select their city of choice upon 
launching a new simulation project. Consequently, 
the data layers are imported and built into the Unity 
3D environment, including buildings data, points of 
interest (POIs), roads, and real-time traffic data, 
where the data can be fully customized within Unity 
3D’s development environment (e.g., changing the 
layout of certain buildings, adding a building,  
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a. 3D visualization of the city of New York, with sample 
weather measurements and some of their parameters

b. Sample visualization of the city of New York, shown 
during a snow storm in late January 2021 

Figure 1: VOWES simulation tool snapshots of the city of New York. 

removing or changing the properties of a road, etc., 
cf. Figure 1.a). In addition, we utilize the 
WeatherStack API (WeatherStack 2021) to acquire 
real-time weather data for the selected city being 
simulated by the user 2 , while storing a 14-day 
historical record of the weather information. The 
historical record is useful to allow weather 
forecasting through the simulator. Following the 
user’s selection of the city of interest, and upon 
launching the simulation project, the tool 
automatically acquires and processes the real-data 
weather information and presents the corresponding 
visualizations and behaviours on-screen (Figure 1.b). 

3.2 Virtual Weather Measurements 
and Events 

We develop a dedicated weather simulation module 
using Unity 3D’s Particle System graphics (Unity 
2020) to create dynamic weather objects, visualizing 
and simulating the behaviours of weather 
measurements (e.g., wind, humidity, temperature) 
and weather events (e.g., storm, tornado, fire). We 
utilize Unity’s particle system to render small images, 
called particles, and control their collective behaviour 
to produce visual effects where every particle within 
the system presents an individual graphical element 
in the effect. Every particle system is modelled as a 
3D sphere object with mutable boundaries, serving as 
a container for a blob of particles associated with the 
target weather measurement or event. The object’s 
properties can be defined and fine-tuned by the user 
through controllable parameters (e.g., coverage, 
value, dissipation) as seen in Figure 1. 

 
2 WeatherStack API is utilized by more than 75k companies 

worldwide, providing multi-year history and live data 
(WeatherStack, 2021). 

3.3 Virtual Sensors and Multi-sensors 

We define a virtual sensor as a spherical Unity 3D 
game object with mutable boundaries, having user-
controllable properties including location 
(coordinates of the sphere’s centre point), 
measurement range (radius of the sphere), sampling 
rate (frequency of capture), and sampling accuracy 
(precision of capture, cf. Figure 2). Every weather 
measurement is associated with an identifying tag, 
which is assigned to the corresponding virtual sensor 
objects once its measurable feature is chosen by the 
user. The user can easily toggle between the sensors’ 
measurable features using their identifying tags. The 
tags help identify all virtual sensor game objects 
without the need for any additional manual code 
writing or Unity scripting. A virtual multi-sensor is 
modelled as a set of multiple overlapping 3D sphere 
objects where each sphere object represents an 
individual virtual sensor. This allows a multi-sensor 
to capture multiple weather measurements from its 
constituent virtual sensors and allows flexibility and 
modularity in designing different kinds of virtual 
sensors. The sensed values are based on the user-
chosen properties for the corresponding weather 
measurement or the event object. Knowingly, the 
sensor starts first finding the contact points with the 
weather game object, estimating the corresponding 
weather value at each point, accumulating the average 
of all points, and showing the output values to the user 
through the database console. This process is done 
continuously until no weather item is detected within 
the sensing range. As soon as the collision ends, the 
function on collision exist indicates that contact has 
been broken between the sensor and the weather 
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game objects, signaling the end of the weather 
measurements sensing process. 

 

Figure 2: Virtual sensor configuration panel. 

a. Conceptual ER describing an extract of the database  

 

 

b. Sample data produced by the VOWES simulator tool

Figure 3: Extract of the VOWES database schema and 
sample data. 

3.4 Environment Data Storage 

The data generated through the VOWES simulation 
environment, including virtual weather 
measurements and events, as well as virtual sensor 
properties and readings, are organized and stored in a 

 
3 http://sigappfr.acm.org/Projects/VOWES/ 

relational database structure. Figure 3 shows the 
database conceptual schema and corresponding 
sample data snapshots from the simulator tool. The 
data from every simulation project is saved in the 
database, with its timestamp under the user’s account, 
and can be utilized by the user to save, exit, reload, 
refresh and query the simulation project. The data is 
also essential to allow the development of data 
monitoring, mining, and extrapolation functionalities, 
including project versioning, temporal querying, 
measurement forecasting, and event prediction. For 
instance, while VOWES does not currently perform 
forecasting and prediction, yet it will allow 
visualizing predicted events once their data becomes 
available. In other words, VOWES will allow the user 
to easily fast-forward (or fast-backward) in time to 
visualize the weather environment and its events in 
the future (or in the past), according to the available 
temporal data in its database. The predicted events 
and their measurements will plug into VOWES and 
benefit from its visualization functionalities. The 
latter are outside the scope of this work and will be 
addressed in a future study. 

4 EMPIRICAL EVALUATION 

We have conducted qualitative and performance 
evaluations to assess the VOWES’ tool, considering 
three evaluation criteria: i) simulation accuracy, ii) 
user friendliness, and iii) time performance. The 
prototype system is available online3. 

4.1 Simulation Accuracy 

An essential feature in our simulator is the 
functionality of the virtual sensor (and virtual multi-
sensor) component(s). As described in Section 4, a 
virtual sensor is designed to mimic the behaviour of a 
real sensor in the virtual simulation environment, by 
capturing weather measurements (e.g., temperature, 
humidity, wind) based on the occurring weather event. 
To test the accuracy of the weather measurements 
made by virtual sensors, we refer to the real-time 
weather values given by the integrated weather API, 
which are set as the initial values for any weather 
measurement or event as seen in Figure 4.a and b. The 
weather values provided by the weather API are 
regularly updated in the simulation tool, to highlight 
the real weather conditions in the chosen geo-location 
being simulated. We also test the performance of the 
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a. Sample wind measurement b. Sample temperature measurement c. Parameters’ panel 

 
d. Wind speed readings with no dissipation (cf. a) 

 
e. Temperature readings with 30% dissipation (cf. b)

Figure 4: Display of weather measurement properties (a b, c) and sensor readings (d, e). 

virtual sensors by checking their readings in 
comparison with the selected weather measurements 
and their associated properties (e.g., value, 
dissipation, location, coverage). For example, if we 
select a wind measurement and set dissipation to 0% 
(cf. Figure 4.a), we expect the sensor to capture the 
same specified wind speed value returned by the API 
as long as it occurs within its coverage area, 
regardless of its collision location (cf. Figure 4.d). Yet 
if we set the temperature dissipation parameter to 
50%, and we incrementally move the virtual sensor 
away from the weather measurement’s location, we 
expect the sensor to capture temperature values at a 
decreasing rate of 50% considering the sensor’s 
collision location w.r.t. the temperature measurement 
location (cf. Figure 4.e). We follow the above 
approach by modifying all the weather measurement 
properties and checking the virtual sensors’ 
measurements accordingly. For every property, we 
consider 10 variations of equal spans (e.g., 
temperature varies between -30, -20, …, 60 Celsius, 
dissipation varies between 0, 10, 20, …, 100%). The 
results produced for all property variations and tests 
concur with the virtual sensors’ expected 
measurements, denoting their simulation accuracy. 

4.2 User-friendliness 

The VOWES tool is designed to allow non-expert 
users who have no previous knowledge about the 

 
4 Graphical User Interface 

simulation tool to be able to easily utilize it and 
benefit from its functionalities. Hence, we evaluate 
the tool’s user-friendliness by performing two kinds 
of evaluations: i) GUI 4  testing, and ii) usability 
testing. The former aims at checking the GUI’s input 
fields and components, while the latter aims at 
checking the ease/difficulty of usage of the software 
tool by non-expert users. 
 

GUI Testing: In this experiment, we check the 
display of input fields and buttons on the screen 
considering the aspects of size, alignment, and 
content. We also check the menu and parameter 
panels of the application by testing their buttons and 
mouse hovering functionality, and their impact on the 
main display. This is applied on all user-interfaces in 
the whole simulator, starting from testing the 
capability of generating more than one project 
simultaneously (through the main page), to the ability 
to select a country/city and viewing it in a 3D 
environment, as well as scrolling and zooming in and 
out of the map with high resolution and details. We 
also evaluate and test the ability to add weather 
measurements and events in the same simulation 
project, and we test the functionality of the designed 
buttons by pressing each button more than 50 times 
consecutively. In addition, we make sure that all the 
weather measurements are movable around the map, 
by relocating every one of them more than once.  
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Table 1: Simulation tool usability evaluation criteria. 

Criterion Description Evaluation question  

Stability 
It is the ability of the software tool to function over a long period 
of time without crashing. 

Given the criterion’s description, how satisfied are you with the 
stability of the simulation tool?

Look and Feel 
It refers to the first impression a user has after using the software 
tool.  

Given the criterion’s description, how satisfied are you with the look 
and feel of the simulation tool?

Ease of Use 
It describes how easy and straightforward it is to use and 
manipulate the software tool. 

Given the criterion’s description, how satisfied are you with the ease 
of use of simulation tool?

Functionality 
It refers to the capacity of the software tool to provide useful 
functions and features serving its main objective.

Given the criterion’s description, how satisfied are you with the 
functionality of the simulation tool? 

Responsiveness 
It refers to the time it takes the software tool to execute a certain 
action or behaviour.  

Given the criterion’s description, how satisfied are you with the 
responsiveness and overall speed of this application? 

Format 
It refers to the materials and options provided (e.g., buttons, 
instructions) and their organization within the software tool.

Given the criterion’s description, how satisfied are you with the 
format of this simulation tool?

Navigation 
It refers to the interactions that allow users to navigate across, 
into, and back-out of the software's format (e.g., back to the 
main page, opening/closing side menus, zoom in/out).

Given the criterion’s description, how satisfied are you with the 
navigation of this simulation tool? 

Icon Intuitiveness 
It reflects how easy it is to guess a button’s resulting action or 
behaviour before a user presses it.  

Given the criterion’s description, how satisfied are you with the 
intuitiveness of the icons of this simulation tool? 

User Interface 
It is the means through which a user controls a software 
application and interacts with it.  

Given the criterion’s description, how satisfied are you with the 
interface of this simulation tool? 

 

 
 

We apply the same testing on the virtual sensors, 
where we perform 10 consecutive addition, renaming, 
deletion, and movement operations on every sensor in 
the simulation exercise. Similarly, we test up to 10 
separate projects by launching every project using a 
different city map, populating it with weather 
measurements, weather events, and virtual sensors, 
saving it, closing it, re-opening it, and verifying that 
the sensors, measurements, events, and their values 
and locations are correctly loaded and initialized 
respectively. Furthermore, we test the parameter 
panels associated with every visual component by 
checking the functionality of its buttons and range 
sliders (describing coverage, value, and dissipation, 
cf. Figure 4.c) and observing their impact on the 
visual component. Results of all GUI tests were 
successful and allowed fine-tuning and improving the 
visual aspects and behaviour in the simulation tool. 

a. Educational level b. Field of study c. Experience with Unity 3D

Figure 5: Non-expert testers’ education levels, majors, and 
experience with Unity 3D 

Usability Testing: We also created an online 
survey5 to evaluate the usability and user-friendliness 
of our simulation tool considering nine evaluation 
criteria: i) stability, ii) look and feel, iii) ease of use, 
iv) functionality, v) responsiveness, vi) format, vii) 
navigation, viii) icon intuitiveness, and ix) user 

 
5 Available at: https://forms.gle/F6odKynC9pcvmCzq6 

interface (cf. Table 1). A total of 30 non-expert testers 
(undergraduate and graduate students, cf. Figure 5) 
were invited to contribute to the experiment, where 
they independently rated every evaluation criterion 
on an integer scale from 0 to 4 (i.e., from highly 
dissatisfied to highly satisfied). Tests were conducted 
on a network version of the tool made available 
through the university’s computer labs, where every 
computer lab consists of an HP ProLiant ML350 
Generation 5 (G5) Dual-Core Intel XeonTM 5000 
processor with 2.66 GHz processing speed and 16 GB 
of RAM. A total of 170 responses were collected, 
with every criterion receiving 30 rating scores. 
Results in Figure 6 show the average rating scores and 
their standard deviations aggregated for every 
criterion. Most testers are satisfied with the tool’s 
usability, producing an overall average rating of 3 out 
of 4 considering all criteria combined. Three criteria 
received average scores below 3: look and feel (2.80), 
ease of use (2.80), and responsiveness (2.80). Tester 
discussions revealed that the latter are generally due 
to the perceived loading time delays of certain Unity 
3D components, visual effects, or animations, which 
probably require increased processing power. This is 
a common issue with most 3D rendering 
environments due to their high processing and 
memory requirements and can be improved with the 
usage of GPUs and other enhancements. Few testers 
recommended including additional features like: i) 
considering the impact of outside weather conditions 
on indoor environments (e.g., indoor heating/cooling 
systems), and ii) including pollution-related 
measurements (e.g., carbon dioxide concentration). 
We plan to consider the latter in a future study. 
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Figure 6: Average tester ratings for every usability 
criterion. 

4.3 Time Performance 

The following paragraphs highlight and discuss the 
time results obtained during the tool’s: i) setup phase 
and ii) simulation phase. Experiments were 
conducted on an HP ProLiant ML350 Generation 5 
(G5) Dual-Core Intel XeonTM 5000 processor with 
2.66 GHz processing speed and 16 GB of RAM. 

Setup Phase: The simulation tool allows the user 
to visualize sensors, weather measurements (e.g., 
wind, humidity, temperature), and weather events 
(e.g., storm, fire, tornado) as objects with editable and 
controllable parameters. As such, we evaluate the 
tool’s setup phase by measuring the time to create and 
load large numbers of game objects, ranging over: 20, 
40, 60, 80, and 100 different objects where half of 
them represent sensors and the other half represent 
weather events and measurements. We start by 
adding 10 sensors and 10 weather phenomena with 
random values for their attributes. Then, we measure 
the time consumed to save and then load these game 
objects from the database, along with their respective 
features. Also, we measure the time to search, 
refresh, and export the game objects’ data from the 
database, to keep track of all the sensors and weather 
phenomena placed or edited in a project environment. 
Results in Figure 7 show that most setup operations 
run in almost instantaneous time, where search, 
refresh and export operations share almost identical 
performance levels with execution time increasing by 
approximately 179𝜇s for every added game object.  

Simulation Phase: This phase demonstrates the 
sensors’ behaviour in action, where sensors are  
 

 
Figure 7: Execution time of setup phase operations. 

 

Figure 8: Execution time of simulation phase operations. 

detecting the weather measurements within their 
coverage areas, based on the features specified by the 
user. Each sensor works following its internal 
sampling rate, collecting data from the environment 
and storing them in the database. As a continuation of 
the setup phase evaluation, we create 50 sensors with 
a sampling rate of 0.1s (i.e., every 0.1s, all sensors 
carry out their reading calculations simultaneously 
and store the results in the database). We evaluate the 
time performance of sensor reading queries 
considering large numbers of data tuples ranging 
over: 10k, 20k, 30k, 40k, and 50k. We evaluate 
export, search, refresh, delete, and undo queries, by 
executing every query 10 times and computing the 
average execution time. Results in Figure 8 reflect 
efficient simulation time, where the maximum 
consumed time was detected at 945ms to export 50k 
tuples (i.e., almost 3.7MB) into an external CSV file. 
This highlights the tool’s time performance in 
running large simulation projects, and its ability to 
simulate complex weather environments with large 
numbers of sensors and weather phenomena. 

5 CONCLUSION 

This paper introduces VOWES, a Virtual Outdoor 
Weather Event Simulator to replicate and measure 
outdoor weather events and data in 3D. We make use 
of the Unity 3D engine to build the simulator 
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environment and introduce special visualizations and 
behaviours to present weather measurements, events, 
and sensors. We integrate the Mapbox SDK to import 
high-resolution world maps, and the WeatherStack 
API to capture real-time weather measurements and 
conditions, allowing for more realistic and accurate 
simulations. Empirical evaluations are promising and 
highlight the system’s quality and potential. 

We are currently extending VOWES to integrate 
a knowledge base structure, providing a formally 
description of the simulator’s components (Noueihed 
H. et al. 2022). We are also investigating the impact 
of data collection (Moataz S. et al., 2020, Ebrahimi 
D. et al. 2019, Ebrahimi D. et al. 2018), and data 
duplication and de-duplication techniques (Shazad F. 
et al. 2022, Mansour E. et al. 2020) on the quality and 
time performance of the tool. We also plan to 
investigate different machine learning models 
(Fuentes S. et al. 2020, Oses N. et al. 2020) and 
evolutionary developmental techniques (Salloum G. 
and Tekli J. 2021, Abboud R. and Tekli J. 2019), to 
perform weather measurement forecasting and event 
prediction (Hewage P. et al. 2021, Moreno R. et al. 
2020). Forecasting and prediction will be added as 
plug-and-play layers, allowing for model 
transparency and extensibility. 
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