Dragut, E. C., Yu, C., Sistla, P., and Meng, W. (2010). Con-
struction of a sentimental word dictionary. In Pro-
ceedings of the 19th ACM international conference
on Information and knowledge management, pages
1761–1764.
Fellbaum, C. (1998). A semantic network of english: the
mother of all wordnets. In EuroWordNet: A multilin-
gual database with lexical semantic networks, pages
137–148. Springer.
Graves, A. (2012). Long short-term memory. In Super-
vised sequence labelling with recurrent neural net-
works, pages 37–45. Springer.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002).
Gene selection for cancer classification using support
vector machines. Machine learning, 46(1):389–422.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Jain, P. K., Saravanan, V., and Pamula, R. (2021). A hybrid
cnn-lstm: A deep learning approach for consumer sen-
timent analysis using qualitative user-generated con-
tents. Transactions on Asian and Low-Resource Lan-
guage Information Processing, 20(5):1–15.
Jain, V. K. and Kumar, S. (2017). Improving customer ex-
perience using sentiment analysis in e-commerce. In
Handbook of Research on Intelligent Techniques and
Modeling Applications in Marketing Analytics, pages
216–224. IGI Global.
Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014).
A convolutional neural network for modelling sen-
tences. arXiv:1404.2188.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1746–1751, Doha, Qatar. Asso-
ciation for Computational Linguistics.
Kour, K., Kour, J., and Singh, P. (2021). Lexicon-based
sentiment analysis. In Advances in Communication
and Computational Technology, pages 1421–1430.
Springer.
Li, D. and Qian, J. (2016). Text sentiment analysis based
on long short-term memory. In 2016 First IEEE In-
ternational Conference on Computer Communication
and the Internet (ICCCI), pages 471–475. IEEE.
Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. (2011). Learning word vectors for sen-
timent analysis. In Proceedings of the 49th annual
meeting of the association for computational linguis-
tics: Human language technologies, pages 142–150.
Mahendhiran, P. and Kannimuthu, S. (2018). Deep learning
techniques for polarity classification in multimodal
sentiment analysis. International Journal of Informa-
tion Technology & Decision Making, 17(03):883–910.
Maheri, A., Jalili, S., Hosseinzadeh, Y., Khani, R., and
Miryahyavi, M. (2021). A comprehensive survey on
cultural algorithms. Swarm and Evolutionary Compu-
tation, 62:100846.
Medhat, W., Hassan, A., and Korashy, H. (2014). Sentiment
analysis algorithms and applications: A survey. Ain
Shams engineering journal, 5(4):1093–1113.
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N.,
Chenaghlu, M., and Gao, J. (2021). Deep learning–
based text classification: A comprehensive review.
ACM Computing Surveys (CSUR), 54(3):1–40.
Mitra, A. (2020). Sentiment analysis using machine
learning approaches (lexicon based on movie review
dataset). Journal of Ubiquitous Computing and Com-
munication Technologies (UCCT), 2(03):145–152.
Mukherjee, S. (2021). Sentiment analysis. In ML. NET
Revealed, pages 113–127. Springer.
Pathak, X. and Pathak-Shelat, M. (2017). Sentiment anal-
ysis of virtual brand communities for effective tribal
marketing. Journal of Research in Interactive Mar-
keting.
Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
pages 1532–1543.
Pota, M., Esposito, M., Pietro, G. D., and Fujita, H.
(2020). Best practices of convolutional neural net-
works for question classification. Applied Sciences,
10(14):4710.
Prakash, T. N. and Aloysius, A. (2021). Textual sentiment
analysis using lexicon based approaches. Annals of
the Romanian Society for Cell Biology, pages 9878–
9885.
Raisa, J. F., Ulfat, M., Al Mueed, A., and Reza, S. S. (2021).
A review on twitter sentiment analysis approaches.
pages 375–379.
Rambocas, M. and Pacheco, B. G. (2018). Online sentiment
analysis in marketing research: a review. Journal of
Research in Interactive Marketing.
Redmore, S. (2013). Machine learning vs. natural language
processing.
Reynolds, R. G. (1994). An introduction to cultural algo-
rithms. In Proceedings of the third annual conference
on evolutionary programming, volume 24, pages 131–
139. World Scientific.
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. (2013). Recursive
deep models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013 confer-
ence on empirical methods in natural language pro-
cessing, pages 1631–1642.
Srivastava, A., Singh, V., and Drall, G. S. (2019). Sentiment
analysis of twitter data: A hybrid approach. Interna-
tional Journal of Healthcare Information Systems and
Informatics (IJHISI), 14(2):1–16.
Taboada, M. (2016). Sentiment analysis: An overview from
linguistics.
Turney, P. D. and Littman, M. L. (2005). Corpus-based
learning of analogies and semantic relations. Machine
Learning, 60(1):251–278.
Wawre, S. V. and Deshmukh, S. N. (2016). Sentiment
classification using machine learning techniques. In-
ternational Journal of Science and Research (IJSR),
5(4):819–821.
NLPinAI 2022 - Special Session on Natural Language Processing in Artificial Intelligence
476