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Abstract: It is estimated that 422 million people around the world have diabetes mellitus (DM)—a devastating, complex, 
and highly heterogeneous disease—requesting better interventions based on disease subtyping. In this 
research, we utilize the discrete wavelet transform (DWT) to decompose and denoise DM data. Using DWT, 
we enhance heart rate variability (HRV) based DM diagnosis, data visualization of the disparities in Human 
Microbiome Project (HMP) data (gut bacteria, metabolomics, proteomics, RNA sequencing, targeted 
proteomics, and transcriptomics data) using demographic features, and insulin resistance prediction. We also 
attempt to forecast continuous glucose monitoring (CGM) ahead by 90 minutes because CGM is unable to 
provide real-time blood glucose measurements. We achieve 91.9% diagnosis accuracy for Type 1 DM using 
Random Forest on data transformed with DWT, holding the potential for usage in clinics. In addition, our 
DWT-based t-SNE and UMAP explorative analysis of HMP data support subtypes of prediabetic patients 
stratified by sex, race, and age. Moreover, DWT-based transformations provide multi-view clustering that 
any other methods would not provide on metabolomics, proteomics, RNA sequencing, targeted proteomics, 
and transcriptomics data and outperform those without DWT. Taken together, DWT-based machine learning 
approaches enable a fine resolution of subtyping DM towards precision medicine. 

1 INTRODUCTION 

Diabetes Mellitus (DM)—a group of metabolic 
diseases that manifest themselves with chronic 
hyperglycemia resulting from issues with insulin 
absorption or production—is estimated to have a 
prevalence of 422 million people around the world. 
DM is a devastating, complex, and highly 
heterogeneous disease, requesting better 
interventions based on disease subtyping (Kharroubi 
& Darwish, 2015). 

Hypoglycemia is a condition where blood sugar 
drops below normal levels. It is a relatively common 
condition in diabetic patients, although it occurs more 
frequently in individuals affected by type 1 DM 
(T1D). While hypoglycemia is usually harmless, 
prolonged hypoglycemia without action can lead to 
seizure, brain damage, or even death. Conversely, 
hyperglycemia is a condition where blood sugar rises 
above normal levels and this condition is more 
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common with individuals affected by T1D. However, 
untreated hyperglycemia can result in damage to 
various tissues, comatose, or even death. 

Because of these conditions, monitoring blood 
glucose levels is vital. While accurate blood glucose 
can be given in near real-time, predicting blood 
glucose levels into the near future would be a useful 
tool in preventing abnormal levels of glucose. By 
using machine learning methods, we sought to 
provide accurate predictions for blood glucose levels 
in individuals with T1D or type 2 DM (T2D).  

At the same time, diagnosing DM is essential for 
the long-term health of patients. Nevertheless, many 
of these tests are either inaccurate or very 
inconvenient. For example, the A1C test is affected 
by many factors, including anemia, smoking, 
pregnancy, and certain infections (Bonora & 
Tuomilehto, 2011). Other tests, like the glucose 
tolerance test, take too much running time for many 
individuals. By using machine learning methods, we 
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sought to classify individuals as healthy or T1D by 
using heart rate variability (HRV). 

In this research, we utilize the discrete wavelet 
transform (DWT) to decompose and denoise DM 
data, and to create multi-view clustering viewing 
window as well. 

To address many aspects of the DM illnesses and 
their treatments, we base our study on CGM forecast, 
HRV-based diagnosis, and DM subtyping. Across 
these topics, we identify prediabetes (i.e., subtyping 
by demographics, prediction of insulin resistance), as 
well as type 1 (i.e., diagnosis, managing blood 
glucose) and type 2 DM (i.e., managing blood 
glucose). Combining all of these topics shines light 
on DWT-based machine learning approaches towards 
precision medicine.  In addition, our DWT-based t-
SNE and UMAP explorative analysis of HMP data 
support subtypes of prediabetic patients stratified by 
sex, race, age, insulin resistance(IR)/insulin 
sensitivity(IS) based on DWT of proteomics, targeted 
proteomics, and transcriptomics data. 

1.1 CGM Forecast 

The introduction of continuous glucose monitoring 
(CGM) enables non-invasive and more 
comprehensive monitoring. CGM sensors can deliver 
interstitial glucose levels every 1 to 5 minutes, in 
contrast with previous glucose monitoring methods. 
This provides a significantly more detailed time series 
on glucose levels that can be automatically sent to 
smart devices. However, CGM devices are unable to 
accurately find blood glucose levels; rather, CGM 
lags behind the trend of blood glucose levels. As a 
result, it is necessary to be able to forecast glucose 
levels by using CGM measurements to provide real-
time glucose updates for diabetic patients (Lobo et al., 
2021). 

Using a modified Artificial Neural Network 
(ANN), a model that replicates the interconnected 
neurons of the brain, Bertachi et al. predicted blood 
glucose 15, 30, 45, and 60 minutes ahead and 
achieved RMSEs of 6.43, 7.45, 8.13, and 9.03, 
respectively (Bertachi et al., 2018). In 2017, Fiorini et 
al. trained 4 different models namely Long Short 
Term Memory (LSTM), Auto Regressive Integrated 
Moving Average (ARIMA), Kalman Filter, and 
Kernel Ridge Regression (KRR) with a dataset of 148 
patients (Fiorini et al., 2017). KRR was the most 
accurate for 30, 60, and 90 minutes, successively. 
However, each model was trained to fit separate 
individuals, rather than fitting all of the patients. 
These methods differed from previous ones with the 
introduction of methods that are not based on neural 

networks, such as KRR. 
In this research, we propose a method to 

accurately predict glucose levels using a novel 
technique developed by Facebook called Prophet. We 
also use traditional methods ARIMA and KRR as 
benchmarks (Taylor & Letham, 2017).  

1.2 Diabetes Prediction using HRV 

Heart rate variability (HRV) refers to the variability 
in RR intervals, which are the time between 
consecutive heartbeats. As DM has a harmful impact 
on the heart, HRV in diabetic patients is reduced 
(Kardelen et al., 2006). As a result, HRV has been 
used to detect DM. Seyd et al. used an ANN, to 
classify HRV signals from 65 healthy people and 65 
diabetic patients. Using the ANN, they achieved an 
accuracy of 93.08%, a precision of 96.67%, and a 
recall of 89.23% (P.t. et al., 2011). Similar to Seyd et 
al., Swapna used a Convolutional Neural Network 
(CNN), but combined with LSTM and support vector 
machine (SVM) for the classification of 
echocardiogram (ECG) signals of 20 diabetic patients 
and 20 healthy individuals. Swapna et al. attained a 
high accuracy of 95.7% with the combination model 
(Swapna et al., 2018). 

On the other hand, machine learning (ML) 
algorithms have also been used to classify HRV data 
with comparably high metrics. Acharya et al., 
recording ECG signals and obtaining HRV signals 
from 15 healthy and 15 diabetic patients, achieved an 
accuracy of 90.0%, precision of 88.9%, and recall of 
92.5% with the AdaBoost classifier with the least 
squares method (Rajendra acharya et al., 2013). 
Furthermore, in a later work, Acharya et al. carried 
out the Decision Tree algorithm on the same HRV 
signals transformed using Wavelet decomposition up 
to 5 levels, resulting in an accuracy of 92.64%, 
precision of 92.59%, and a recall of 92.68% 
(Rajendra acharya et al., 2015). 

To predict DM using HRV signals, we examined 
the SVM, XGBoost, and Random Forest (RF) on 
HRV signals transformed in a variety of methods via 
DWT. While RF has been used to diagnose DM 
(Samant & Agarwal, 2018; Benbelkacem, 2019), 
XGBoost and RF have not been used prior to classify 
HRV signals transformed using DWT, and our 
remarkable experimental results strongly support our 
algorithm. 

1.3 Wavelet based t-SNE and UMAP 

t-SNE (t-Distributed Stochastic Neighbor 
Embedding) visualization in biomedical fields has 
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been recently growing in popularity, particularly for 
high-dimension single-cell sequencing data. 
However, its application in the detection of DM still 
remains rare and limited. UMAP (Uniform Manifold 
Approximation and Projection) is widely applied in 
data visualization and dimension reduction (McInnes 
et al., 2018). 

Using t-SNE visualization, Gupta et al. 
successfully distinguished patients diagnosed with 
T2DM from the non-diabetic, healthy samples based 
on a dataset of 9,948 samples (Gupta et al., 2015). 
However, the visualization was unable to cluster the 
healthy and diagnosed individuals into individual 
clusters. 

Bej et al. analyzed a dataset of 10,125 T2DM 
patients from the National Family Health Survey-4, 
involving many features such as medical history, 
dietary habits, addictions, and socioeconomic status. 
They found that the conventional application of 
UMAP was ineffective and uninformative. However, 
applying a feature type-wise clustering method, Bej 
et al. enabled visualizing the patients by clusters 
corresponding to different features. Their findings 
indicated that age and body mass index (BMI) are the 
most important factors for T2DM (Bej et al., 2020).  

For data visualization, we first denoised the data 
by applying DWT on the HMP Stanford datasets 
(iHMP Research Network Consortium, 2014) into 
multi-view wavelet domain followed by applying t-
SNE and UMAP to the transformed data. Our newly 
derived DWT-based t-SNE and UMAP methods on 
metabolomics, proteomics, RNA sequencing, 
targeted proteomics, and transcriptomics data enable 
better clustering than do those without DWT. 

2 RESULTS 

2.1 Data Pre-processing 

We used CGM and ECG data from the D1NAMO 
dataset, a collection of data from 20 healthy 
individuals and 9 patients with type 1 DM. The data 
contain 4 day and collected ECG, CGM, food, and 
breathing variables. CGM data were measured in 
five-minute intervals before each meal and two hours 
afterwards, for a total of 6 times a day. We 
transformed the CGM unit from mmol/L to mg/dL. 
Alongside breathing data and the CGM data, the ECG 
data were collected at a rate of 250 Hz (Dubosson et 
al., 2018). The HRV data recorded many RR intervals 
in succession. We excluded a misclassified healthy 
control with type 1 DM. 

The Human Microbiome Project (HMP) began in 
2008 to investigate how microbiomes affect their 
hosts. Split up into two phases, HMP and Integrative 
HMP (iHMP or HMP2), HMP has collected over 
10000 samples from 300 subjects. HMP took 
microbiomes from both healthy adults and diseased 
individuals. iHMP explored how microbiomes 
interacted with their hosts. Metabolism, immunity, 
and molecular activity were all investigated, along 
with how microbiomes might inform us about the 
onset of type 2 DM. We downloaded the data from 
the iPOP Project Data Portal from each of the 
abundance entries (Snyder Lab, n.d.). We describe 
results from amounts of certain types of bacteria in 
the gut, amounts of certain products of metabolism, 
untargeted profile of the amounts of certain proteins, 
RNA transcripts, targeted profile of the amounts of 
certain proteins, and also RNA transcripts. 

For the glucose data from the DM patients in the 
D1NAMO dataset, we removed the manual glucose 
measurements so that the glucose data would solely 
consist of CGM data. We then used the glucose 
column, where each index represents five minutes. To 
preprocess the HRV data, we first had to find 
intervals of data without any outliers (which we 
defined as any HRV measurement of under 500 
milliseconds or above 2000 milliseconds). We chose 
to use intervals of length 512 to be able to use DWT 
to denoise the data and generate TS data. We also 
decided to treat each interval as an independent 
sample, which gave us 3003 healthy HRV samples 
and 769 diabetic HRV samples. To fix this data 
imbalance, we used SMOTE Tomek resampling, 
which resulted in about equal numbers of healthy and 
diabetic HRV samples. 

To preprocess the abundance matrices from the 
HMP dataset, we matched each subject’s VisitID to 
their IR/IS classification (either IR or IS; we removed 
subjects with Unknown). Subsequently, we removed 
subjects for whom there were missing values. In 
addition, we normalized the data by adding 0.1 and 
taking the log base 2. We then performed DWT on 
the normalized data. Figure 1 illustrates the workflow 
we followed. 
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Figure 1: The workflow of forecasting CGM, predicting 
DM using HRV, data visualization using t-SNE and 
UMAP, and predicting IR in prediabetes. 

2.2 CGM Forecast 

In our research we used 3 different methods to predict 
blood glucose levels. Table 1 bolds the best RMSE 
and MAE for 30, 60, and 90 minutes, which are 
shared by KRR and ARIMA. In figure 2, KRR even 
correctly anticipates a drop in CGM for patient 3. 
These results support KRR and ARIMA as good 
forecasters of CGM, whereas Prophet did not yield 
good forecasts. 

Table 1: Each metric is represented in the form mean 
(standard deviation) based on the results of each patient. 

 30 min 60 min 90 min 

 RMSE MAE RMSE MAE RMSE MAE

KRR 24.27 26.99 43.05 42.88 59.60 56.38

 (25.37) (29.09) (44.74) (43.95) (63.01) (60.02)

ARIMA 25.92 17.50 54.41 37.09 72.359 51.14
 (7.22) (4.23) (16.95) (8.83) (25.65) (17.05)

Prophet 60.43 45.79 67.17 50.85 73.29 55.68

 (26.27) (21.69) (28.17) (23.08) (30.09) (24.58)

The best metrics for each category are bolded. 

 
Figure 2: A 90-minute forecast by KRR for patient 3. 

Of the four, KRR had the lowest RMSE for each 
prediction horizon while ARIMA had a lower MAE. 
Because of this, KRR may not be a reliable model to 
use when forecasting blood glucose. KRR had 
difficulty predicting when blood glucose would 
suddenly rise or drop. ARIMA had the lowest 
standard deviations of any group. This is represented 
in its MAE, where it consistently has the lowest value.  
Prophet performed poorly. Its RMSE and STD were 
both relatively high.  

A limitation in our work was the limited datasets 
that were available to us. The small training size that 
we had, nine diabetic patients, causes our models 
difficult to generalize. The accuracy of our models 
was most likely negatively affected by the shorter 
time series data. For future research, a larger dataset 
of patients would be desirable. 

2.3 Diabetes Prediction using HRV 

In this section, we assess machine learning algorithms 
on data transformed in a variety of ways using DWT 
(Table 2). RF algorithm on HRV signals transformed 
to the Wavelet Domain (TS) and resampled using the 
SMOTE Tomek method; the algorithm yielded an 
accuracy of 91.9%, precision of 95.5%, and recall of 
87.9%. These results, while the accuracy and recall 
are lower and the precision is higher, are comparable 
to those of Acharya. Moreover, Acharya used 1000 
HRV samples at a time while we only used 512; as a 
consequence, our model classifies HRV signals with 
nearly as much accuracy while taking about half as 
much time to record a patient’s HRV. 

Table 2: Best overall results out of all data transformations 
tested. 

 Accu-

racy 

Balanced

Accuracy

Preci- 

sion 

Recall ROC

AUC

F1 

Score 

RF 0.919 0.919 0.955 0.880 0.968 0.916
XGBoost 0.788 0.788 0.788 0.789 0.871 0.788

SVM 0.775 0.775 0.771 0.783 0.853 0.777

RF: Random Forest. The best metrics for each category are bolded. 

As shown in Figure 3, it appears that the best 
recall of 88.4% occurred with RF for classifying HRV 
signals. For RF, all data were classified with 
comparable ROC AUC and average precision (Figure 
4 & 5). Nevertheless, (TS)* data performed best in 
diagnosing diabetes. 
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Figure 3: The four best confusion matrices for Random 
Forest are (TS)*, a1, TS, and No DWT, in that order. Each 
entry is of the form mean ± standard deviation. 

 
Figure 4: The four best ROC curves for Random Forest are 
(TS)*, a1, TS, and No DWT with mean AUC of 0.97, 0.96, 
0.96, and 0.96 respectively. Each ROC curve displays 10 
folds as well as a mean curve (mean ± standard deviation). 

Previously, Acharya et al., using the Decision 
Tree algorithm on the same HRV signals transformed 
using DWT decomposition up to 5 levels, obtained an 
accuracy of 92.64%, precision of 92.59%, and recall 
of 92.68% (Acharya et al., 2015). 

However, compared to the neural networks of 
other papers, RF on HRV data transformed to the 
Wavelet Domain performed poor. Seyd P.T.’s ANN  

 
Figure 5: The four best Precision v. recall curves for 
Random Forest are (TS)*, a1, TS, and No DWT with mean 
average precision of 0.97, 0.96, 0.97, and 0.97 respectively. 
Displayed are the results from each of the 10 folds. 

Performed with an accuracy of 93.08%, precision of 
96.67%, and recall of 89.23%. Of note, RF is a 
simpler model than a neural network, so our model is 
promising for relatively fast and accurate DM 
diagnosis for use by clinicians. 

However, a limitation of our classification work 
with HRV is that we resample the HRV signals to 
correct the data imbalance between healthy and DM. 
This means that some of the samples may not be 
accurate representations of HRV. Also, given that we 
do not know how long the DM patients in the 
D1NAMO dataset have had DM, and as DM worsens 
cardiac health over time, it is most likely that people 
with DM who have not had DM for very long may be 
classified with lower accuracy. Thus, for future 
research, we recommend using RF and transforming 
the HRV signals to the DWT domain using DWT on 
HRV signals from DM patients who have not had the 
condition for more than a few years. 

2.4 t-SNE and UMAP 

Given the high complexity of the HMP Stanford 
datasets, t-SNE and UMAP figures reflect the 
heterogeneity and homogeneity in different datasets. 
Both t-SNE and UMAP enable successfully 
distinguishing several qualities within prediabetes 
patients. We first applied 6 different treatments for 
the dataset, namely: Preprocessed, Preprocessed with 
Wavelet Denoise, Preprocessed in Wavelet Domain, 
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Normalized, Normalized with Wavelet Denoise, and 
Normalized in Wavelet Domain. In addition, t-SNE 
and UMAP were each used to test the separability of 
5 different bases for separation, which include: 
Gender, Race, Insulin Resistance (IR)/Insulin 
Sensitivity (IS) Classification, Age Group, and BMI 
Group. 

We were able to utilize UMAP to obtain well-
defined clusters, particularly in gender classification 
(Figure 6) to the Targeted Proteomics dataset. 

 
Figure 6: UMAP on the Targeted Proteomics dataset. 

The ‘Preprocessed’ data presents two clusters, 
largely separating males and females. On the other 
hand, the ‘Normalized’ data presents a scatter of 
points, with the males and females largely mixed 
together. The ‘Preprocessed WT Domain’ figure 
displays two compact clusters, comparatively cleaner 
than both the ‘Wavelet Denoised’ and preprocessed 
figures. 

Of the Lipidomics dataset figures, the t-SNE 
results contain noticeable clusters for Black and 
Hispanic, particularly in the ‘Preprocessed’, 
“Denoised”, and ‘WT Domain’ with figure presenting 
a more compact result (Figure 7). 

 
Figure 7: t-SNE on the Lipidomics dataset. 

We analyzed the Cytokine dataset, resulting in 
distinct BMI-based clusters observed with both the t-
SNE and UMAP. In t-SNE, the Figure 8 shows that 
‘Denoised’ and ‘Normalized Denoised’ pretreated 
datasets present more compact clusters and points. 
The other classification subjects also aggregate into 
tight, compact clusters. It appears that certain 
prediabetic subjects share different characteristics, 
possibly presenting a stratification of these patients in 
each cluster (Figure 8). 

 

 
Figure 8: t-SNE on Cytokine abundance dataset. 

 

Figure 9: UMAP on the Transcriptomics dataset. 

Of the Transcriptomics dataset figures, the UMAP 
results contain well-defined clusters, particularly in 
gender classification (Figure 9). In all gender 
classification figures for Transcriptomics, we 
observed a gender-based cluster pattern. Thus, it has 
implications in gender-based stratification of patients 
in precision medicine for prediabetic patients. 

The application of UMAP on the Gut 16 
Microbiome dataset resulted in clear separation based 
on IR/IS classification (Figure 10). These results 
allow us to observe the patterns in clusters in the set 
of prediabetic subjects, based on gut microbiomes. 
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Figure 10: UMAP on the Gut 16 Microbiome dataset. 

2.5 Prediabetes Insulin Resistance 
Prediction 

For SVM on the metabolomics data, both the 
normalized and (TS)* normalized data obtained the 
best results, with 77.7% accuracy, 75.0% balanced 
accuracy, 100% precision, 50% recall, AUC of 1.000, 
and F1 of 0.661. Similarly, the best results for SVM 
on the proteomics data were from the normalized and 
TS normalized data, bolded in Table 3, with 91.6% 
accuracy, 90.5% balanced accuracy, 100% precision, 
81.1% recall, AUC of 1.000, and F1 of 0.892. We 
observed a similar propensity for SVM on the 
Targ.proteomics data and the Transcriptomics data. 
The normalized and TS normalized data enable 
perfect accuracy, balanced accuracy, precision, recall, 
AUC, and F1. For SVM on the Transcriptomics data, 
denoised normalized data also got perfect metrics. 

Table 3: Results of classifying SVM model data as IR or IS 
on Proteomics. 

Data 

Type 

Accu-

racy 

Balanced

Accuracy

Preci- 

sion 

Recall ROC

AUC

F1 

Score

No DWT 0.558 0.500 0.000 0.000 0.500 0.000

(TS)* 0.558 0.500 0.000 0.000 0.500 0.000

Denoised 0.558 0.500 0.000 0.000 0.500 0.000

N1 0.916 0.905 1.000 0.811 1.000 0.892
(TS)* N 0.916 0.905 1.000 0.811 1.000 0.892
Denoised 

N 

0.558 0.500 0.000 0.000 0.500 0.000

1N means Normalized. The best metrics for each model are bolded. 

On the other hand, the TS data yielded the best 
overall results for Random Forest on the 
RNAseq_abundance data (72.1% accuracy, 58.9% 
balanced accuracy, 19.0% recall, 0.309 F1), though 

all the data types performed mostly the same for SVM 
on the RNAseq_abundance data (67.2% accuracy, 
51.0% balanced accuracy, 30.0% precision, 2.0% 
recall, F1 of 0.037; denoised got an AUC of 0.988). 
The TS data also did best overall for Random Forest 
on the Transcriptomics data, with 92.2% accuracy, 
91.2% balanced accuracy, 84.5% recall, AUC of 
0.990, and F1 of 0.890, though the results for the 
denoised data are comparable (had highest precision 
of 98.0%). Thus, across all HMP data, DWT 
transformed data yielded better performance in 
predicting IR or IS in prediabetes. 

Our application of the DWT based two 
experimental visualization techniques to the HMP 
Stanford dataset hold promising potential in allowing 
biomedical specialists to interpret the data by 
studying different visualizations of the dataset. We 
envision that our approach has the potential to 
uncover correlations between certain microbiomes 
and attributes in prediabetes patients, holding a 
promise for earlier detection and investigation of 
diabetic behavior in patients. 

3 CONCLUSIONS 

With our decomposed and denoised DM data, we 
enhance HRV based DM diagnosis, data visualization 
of the disparities in HMP data demographic features, 
and insulin resistance prediction. We forecast 
continuous glucose monitoring (CGM) 90 minutes in 
the future because CGM is unable to provide real-
time blood glucose measurements. Moreover, we 
achieved 91.9% T1D diagnosis accuracy using 
Random Forest on data transformed with DWT, 
holding the potential for usage in clinics. 
Furthermore, our DWT-based t-SNE and UMAP 
explorative analysis of HMP data supports subtypes 
of prediabetic patients stratified by sex, race, and age. 
Thus, DWT-based transformations on metabolomics, 
proteomics, RNA sequencing, targeted proteomics, 
and Transcriptomics data yield better separation and 
clearer clusters than those without DWT. 

Our results have implications in precision 
medicine. Precision medicine is based on 
stratification of patients, taking into account personal 
lifestyle, genetic information, and biomarkers. Our 
research involves two datasets, the HMP Stanford 
dataset along with the D1NAMO dataset, both of 
which contain extremely detailed information upon 
microbiomes, protein structure, CGM, ECG, food 
consumption, and other vital data, suitable for 
exemplification of machine learning modeling in 
precision medicine. Taken together, DWT-based 
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machine learning approaches enable a fine resolution 
of subtyping DM towards precision medicine. 
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