ACKNOWLEDGEMENTS 
This work was supported in part by the research grant 
(No.:  RP/ESCA-04/2020)  offered  by  Macao 
Polytechnic Institute. 
REFERENCES 
Lin,  H.,  Tse,  R.,  Tang,  S.-K.,  Chen,  Y.,  Ke,  W., Pau,  G. 
(2021).  Near-realtime  face  mask  wearing  recognition 
based on deep learning. In 18th IEEE Annual Consumer 
Communications and Networking Conference (CCNC 
2021). doi: 10.1109/CCNC49032.2021.9369493 
Chan,  K.  I.,  Chan,  N.  S.,  Tang,  S.-K.,  Tse,  R.  (2021). 
Applying Gamification in Portuguese Learning. In 9th 
International Conference on Information and 
Education Technology (ICIET 2021),  pp.178  –  185. 
doi: 10.1109/ICIET51873.2021.9419612 
Chan, N. S., Chan, K. I., Tse, R., Tang, S.-K., Pau, G. 
(2021).  ReSPEcT:  privacy  respecting  thermal-based 
specific  person  recognition.  In  Proc. SPIE 11878, 
Thirteenth International Conference on Digital Image 
Processing (ICDIP 2021).  https://doi.org/10.1117/ 
12.2599271 
Tse, R., Mirri, S., Tang, S.-K, Pau, G, Salomoni, P. (2020). 
Building  an  Italian-Chinese  Parallel  Corpus  for 
Machine  Translation  from  the  Web,  In  6th EAI 
International Conference on Smart Objects and 
Technologies for Social Good (GOODTECHS).  pp. 
265-268. doi: 10.1145/3411170.3411258. 
Zin, M.; Racharak, T. Le, N. (2021). Construct-Extract: An 
Effective  Model  for  Building  Bilingual  Corpus  to 
Improve  English-Myanmar  Machine  Translation.  In 
Proceedings  of  the  13th  International  Conference  on 
Agents  and  Artificial  Intelligence  -  Volume  2: 
ICAART,  ISBN  978-989-758-484-8;  ISSN  2184-
433X,  pages  333-342,  doi:  10.5220/0010318903330 
342 
Cheong, S. T., Xu, J. Liu, Y. "On the design of web crawlers 
for  constructing  an  efficient  Chinese-Portuguese 
bilingual  corpus  system,"  2018  International 
Conference  on  Electronics,  Information,  and 
Communication  (ICEIC),  2018,  pp.  1-4,  doi: 
10.23919/ELINFOCOM.2018.8330698. 
Cheok,  S.  M.,  Hoi,  L.  M.,  Tang,  S.-K.,  Tse,  R.  (2021). 
Crawling  Parallel  Data  for  Bilingual  Corpus  Using 
Hybrid  Crawling  Architecture.  In  12th International 
Conference on Emerging Ubiquitous Systems and 
Pervasive Networks (EUSPN-2021),  198,  122-127. 
https://doi.org/10.1016/j.procs.2021.12.218. 
Sharma, S., Gupta, P. (2015). The anatomy of web crawlers. 
In  International Conference on Computing, 
Communication & Automation. doi:10.1109/ccaa. 
2015.7148493. 
Cho,  J.,  Garcia-Molina,  H.  (2002).  Parallel  crawlers.  In 
Eleventh International Conference on World Wide Web 
(WWW). doi:10.1145/511446.511464 
Chakrabarti,  S.,  Berg,  M.  V.,  Dom,  B.  (1999).  Focused 
crawling:  A  new  approach  to  topic-specific  Web 
resource  discovery.  Computer Networks,  31(11-16), 
1623-1640. doi:10.1016/s1389-1286(99)00052-3 
Pappas,  N.,  Katsimpras,  G.,  Stamatatos,  E.  (2012).  An 
Agent-Based Focused Crawling Framework for Topic- 
and Genre-Related Web Document Discovery. In IEEE 
24th International Conference on Tools with Artificial 
Intelligence. doi:10.1109/ictai.2012.75. 
Li, Y. (2010). Study and implementation on key techniques 
for  an  example-based  machine  translation  system.  In 
Second IITA International Conference on Geoscience 
and Remote Sensing.  doi:10.1109/iita-grs.2010.560 
4108. 
Zhao, R., Mao, K. (2018). Fuzzy Bag-of-Words Model for 
Document  Representation.  IEEE Transactions on 
Fuzzy Systems,  26(2),  794-804.  doi:10.1109/tfuzz. 
2017.2690222. 
Uchida,  S.,  Yoshikawa,  T.,  Furuhashi,  T.  (2018). 
Application  of  Output  Embedding  on  Word2Vec.  In 
2018 Joint 10th International Conference on Soft 
Computing and Intelligent Systems (SCIS) and 19th 
International Symposium on Advanced Intelligent 
Systems (ISIS). doi:10.1109/scis-isis.2018.00224. 
Ristad,  E.,  Yianilos,  P.  (1998).  Learning  string-edit 
distance.  IEEE Transactions on Pattern Analysis and 
Machine Intelligence,  20(5),  522-532.  doi:10.1109/ 
34.682181 
Baker, M., Malmkjær, K. (2001). Routledge Encyclopedia 
of Translation Studies. Psychology Press. 
Zhang, H., Liu, Q. (2002) Model of Chinese Words Rough 
Segmentation  Based  on  N-Shortest-Paths  Method. 
Journal of Chinese Information Processing, vol. 5, pp. 
1-7.