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Abstract: Emerging full stack autonomous driving software packages promise rapid development on autonomous 
driving deployment studies. However, considering the increasing importance of cooperation among vehicles, 
the absence of the Cooperative Autonomous Vehicle (CAV) research focus in those works draws attention. 
In this paper, we review some CAV simulation frameworks and introduce a novel ROS based CAV Planning 
simulation framework, CAVPsim. The framework has three main components: vehicle, communication, and 
computation models. We verify the integration of these three components, and we show, via a simple scenario, 
that cooperation of communicating autonomous vehicles can be effectively simulated on CAVPsim. 

1 INTRODUCTION 

Emerging full stack autonomous driving software 
packages like AUTOWARE (Kato, 2018) and 
APOLLO (Xu, 2020), promise rapid development in 
stand-alone operation of Autonomous Vehicles 
(AVs). AUTOWARE has different versions 
developed on ROS (AUTOWARE AI, AUTOWARE 
PILOT) and ROS2 (AUTOWARE AUTO). 
APOLLO has been developed on the CyberRT 
framework. A significant issue that attracts attention 
regarding all these full stack software packages is the 
common lack of effective contribution of Cooperative 
Autonomous Vehicles (CAVs) solutions. The aim of 
the present work is to contribute to ROS framework 
by introducing a set of simulation components for 
CAV operation to fill the current gap between 
mentioned full stack AV software frameworks and 
CAV research scope. 

ROS (Quigley, 2009) supports built-in 3D 
visualization, flexible development environment, 
access to widely used data set formats, message 
passing infrastructure, ability to run on multiple 
distributed machines and is a widely acceptable 
framework for autonomous driving applications 
which makes deployment straightforward. In ROS 
one can create applications running independently 
and communicating with other applications via 
message passing based on TCP/IP protocol. 
Providing a simulation facility using ROS tools is a 

common mode of ROS usage. Using benefits of the 
ability to create independent applications referred as 
nodes, models can be integrated as nodes in ROS. As 
a result, distributed processing can be performed in 
ROS and messages can be passed between models 
and other components of this simulation 
environment. The mentioned set of model 
components, message passing infrastructure, 
visualization tools, message formats can form a 
Cooperative Autonomous Vehicle Simulator in ROS. 
This will provide a particularly useful tool for 
researchers and developers who intend to develop 
distributed cooperative decision making and planning 
applications. For simplicity, hereafter, the proposed 
environment will be referred as CAVPsim, 
Cooperative Autonomous Vehicle Planning 
simulation framework. 

One may use AUTOWARE software tools and 
approaches for environmental modelling, HD maps, 
perception and control tools. AUTOWARE uses 
Open Planner stack (Hatem, 2017) as AV global and 
local planner and decision maker. The generated local 
plan would then be transferred to controller modules. 
AUTOWARE already has pure pursuit and Model 
Predictive Controller, MPC (Snider, 2009) 
implemented for lateral and longitudinal controllers. 
We have decided to use the same controller tools in 
CAVPsim. In the present work, we propose a set of 
complementary tools to be used to develop 
cooperative and distributed planner solutions which 
would correspond to the CAV global planning 
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module. The opportunity to study distributed 
application for cooperative and distributed decision-
making algorithms in this framework rises due to the 
nature of ROS which allows developers to form a 
network of machines next to supporting message 
passing infrastructure, known as ROS messages. 

In the following, we will review similar studies 
that propose simulation frameworks for CAV 
research. The studies use different implementation 
environments and operating system kernels (e.g., 
works of Vieira (2009) and Pereira (2012)) or use 
embedded code for real time systems (e.g., works of 
Bounini (2014)). In the next section we introduce 
CAVPsim model components. A verification for 
model components integration will also be provided. 
We then conclude with a summary of CAVPsim 
features, pointing out the intended user needs that 
CAVPsim aims to respond to. 

Simulation environments proposed by various 
authors basically target their own areas of interest in 
CAV operation (Do, 2019). As an example, we can 
refer to the work of Vieira (2009), which is a 
simulation framework to study platooning of 
integrated CAVs. Work by Pereira et. Al. (2012) 
suggests a more generic simulation environment and 
proposes two independent simulation modules 
referred as traffic simulation and robotic simulation 
to simulate cooperative agents' sensors and actuators. 
However, in Pereira work a model for vehicle on-
board computation resource is not provided. In work 
of Bounini (2014), the authors introduce their real 
time simulator with two main constituents: 

1 A simulator for vehicle dynamics and 
environmental simulation and sensor 
behaviours. 

2 Using OPAL-RT technology as vehicle 
computation resource. 

This, however, is a very specific embedded 
hardware and software system configuration which 
makes the scope far different from ours, nevertheless 
worth mentioning as a complete real time CAV 
simulation setup. 

2 CAVPsim FRAMEWORK 

CAVPsim is constructed mainly with three main 
components: communication model, computation 
model and vehicle model. These models can be 
launched with different sets of parameters. The 
operator can use ROS environment tools like 
ROSbags and RVIZ next to the set of tools in 
CAVPsim to interact with datasets and raw sensors’ 

data. Here we continue by discussing the 
implementation of the three mentioned models and 
corresponding verification study results. At the end of 
this section, we present simulation of a simple 
cooperative decision-making algorithm in a simple 
driving scenario. 

2.1 Communication Model 

Higuchi (2019) used a communication model with 
probabilistic function using ITS-G5 DSRC 
characteristic parameters in their study. This model 
was used to interact with the communication protocol 
layer. Distributed application development in 
CAVPsim requires a communication model to 
interact with the communication protocol layer to 
manage job batch size and expected execution time. 
Due to this similarity in application of 
communication model in two works, we refer to the 
approach of Higuchi to model ITS-G5 as the 
communication model for our work on CAV. 
Considering p = exp (−λs/γτ ), as generic model to 
represent probability of delivering a message between 
sender and receiver with an average of s bytes as 
message size, λ representing the average number of 
participating vehicles, γ representing the data transfer 
rate in bytes per seconds, and an average transmission 
interval of τ seconds.  CAVPsim communication 
model will be setup with the following values for 
mentioned parameters according to ITS-G5 and 
DSRC specs for a pair of cooperative vehicles in a 
communication range of 300 meters: λ = 2 and γ = 6 
Mb/s: data rate of ITS-G5 and τ = 100 ms: 
transmission rate of ITS-G5. p, probability of 
delivering an incoming message and size of 
messages, s. 

Our aim is to model ITS-G5 behaviour toward 
incoming message which is to pass it or block it based 
on the probability of delivering dictated by incoming 
message size. The model would measure incoming 
message size and would calculate its assigned 
probability of delivery.  

2.1.1 Verification of Integration 

To verify our model integration, we used a dataset 
that stores sent messages and delivered message 
streams between two communication nodes from a 
logged measurement of ITS-G5 performance 
according to work of Mavromatis (2019). We can 
conclude our model verification by specifically 
comparing received messages stream from CAVPsim 
model with the logged ones. Referring to data set 
presented in Mavromatis work, we get vehicle 00 as 
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the one which sends messages and vehicle 01 as the 
one that receives those messages, so we apply vehicle 
00 messages into our CAVPsim model to simulate 
ITS-G5 behaviour. We configure the ITS-G5 
communication model with bandwidth of 6Mbs, 
message rate of 5 Hz. We represent message process 
behaviour as time delay with mean of 0.12 seconds 
and standard deviation of 0.02 seconds with normal 
distribution. Figure (1) illustrates received messages 
time stamp difference from sent ones both from 
dataset and simulation results. The stochastic 
behaviour of communication model would generate 
slightly different time stamps at received messages 
which is observable from results of multiple running 
of simulation. 

 
Figure 1: Time difference between sent and received 
messages in milliseconds, per message sequence. 

2.2 Computation Model 

The global and the most primitive approach to 
reference computation resource performance is to 
measure number of floating-point operations a 
machine can perform per seconds, referred as FLOPS, 
FLoating-point Operations Per Second. We 
characterize the computation model in CAVPsim as 
inequality (1). ௔௣௣೑೗೚ൈ௕௔௧௖௛ೞ೔೥೐௧೚೛ ൑ 𝐶𝐴𝑉௜௙௟௢௣௦   (1) 

Where 𝑎𝑝𝑝௙௟௢  is the number of floating-point 
operations of each job batch of distributed processing 
application, 𝑡௢௣ is the expected computation time for 
job batch, 𝑏𝑎𝑡𝑐ℎ௦௜௭௘  is the size of distributed 
processing job batch and 𝐶𝐴𝑉௜௙௟௢௣௦  is the available 
computation resource of 𝑖௧௛ CAV in FLOPS. It is also 
reasonable to expect that for the distributed algorithm 
integrated in CAV on board computer, the CPU may 
have run more than 𝑎𝑝𝑝௙௟௢ ൈ 𝑏𝑎𝑡𝑐ℎ௦௜௭௘  floating 
point operations since the algorithm may apply a 
convergence check routine before finishing the job. 
This behaviour will be modelled by 𝑎𝑝𝑝௖௢௡஼௢௘௙ , 

application convergence coefficient where 𝑎𝑝𝑝௖௢௡஼௢௘௙ ൐ 1 . We note that in case of 𝑎𝑝𝑝௖௢௡஼௢௘௙ ൌ 1, we have an algorithm that does not 
run an unknown number of floating-point operations 
in effort to reach convergence. ௔௣௣೎೚೙಴೚೐೑ൈ௔௣௣೑೗೚ൈ௕௔௧௖௛ೞ೔೥೐௧೚೛ ൑ 𝐶𝐴𝑉௜௙௟௢௣௦  (2) 

2.2.1 Verification of Integration 

To verify integration of described computation 
resource in CAVPsim, we initialize computation 
model with following setup: 𝑎𝑝𝑝௖௢௡஼௢௘௙ ൌ 1 ,  𝑎𝑝𝑝௙௟௢ ൌ 10𝐾 𝐹𝐿𝑂 , 𝑏𝑎𝑡𝑐ℎ௦௜௭௘ ൌ 10𝐾  and 𝑡௢௣ ൌ0.01 𝑠𝑒𝑐  and will discuss the results to verify this 
model. We run a simple floating-point operation of 
multiplying 3.14 by 3.14 representing 1 floating point 
operation as unit and repeat it in a loop for 𝑎𝑝𝑝௖௢௡஼௢௘௙ ൈ 𝑎𝑝𝑝௙௟௢ ൈ 𝑏𝑎𝑡𝑐ℎ௦௜௭௘ times and measure 
the execution time. Thus, we can derive the FLOPS 
required from 𝐶𝐴𝑉௜  so we observe if inequality (1)  holds. Figures (2) and (3) show execution time and 
FLOPS performed by computation model in 
CAVPsim with the mentioned configuration. 

The execution time of 0.125 seconds is more than 
12 times higher than 𝑡௢௣, we can conclude that we 
need a smaller job batch to meet timing criteria or 
need more time to perform calculation. Trading off 
between job size 𝑏𝑎𝑡𝑐ℎ௦௜௭௘  and expected execution 
time 𝑡௢௣  would be done by distributed application 
layer. 𝑎𝑝𝑝௙௟௢  would be constant or a dynamic 
parameter which would be evaluated in a distributed 
application layer as well. 

 
Figure 2: Execution time of computation resource model in 
CAVPsim for 10K batch size and 10K FLO algorithm. The 
behaviour of increasing in execution time at the final times 
of simulation is due to killing data logging application of 
CAVPsim which has effect on those values. 
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Figure 3: FLOPS in scale of 100Mega, capacity of 
computation resource model in CAVPsim for 10K batch 
size and 10K FLO algorithm. The behaviour of dropping 
computation resource FLOPS at the final times of 
simulation is due to killing data logging application of 
CAVPsim which has effect on those values. 

2.3 Vehicle Model 

For vehicle model we refer to works of Polack (2017) 
and Dong (2009) for vehicle kinematic, lateral and 
one degree of freedom (1DOF) longitudinal model 
integrated in Simulink. We use Simulink Coder to 
generate C code out of combination of vehicle 
models. Figure (4). 

 
Figure 4: Vehicle longitudinal model and kinematic bicycle 
model integration in Simulink. 

2.3.1 Verification of Integration 

We verify the vehicle model integration by classical 
method of applying step signals as control signals for 
engine torque and steering rate. We setup vehicle 
model with Table (1) parameters related to TOYOTA 
COROLLA 2018. 

By applying same torque and steering rate 
visualized in Figure (5), we verify our code 
integration of vehicle model into CAVPsim. Figure 
(6) shows travelled trajectory result of applying same 
inputs to same model but in two different 
environments, Simulink and CAVPsim. Since there is 
absolutely no difference between trajectories, we 
verify our vehicle lateral and longitudinal model 
integration in CAVPsim referring to Simulink 
integration of same models. 

Table 1: Toyota Corolla 2018 parameters. 

Parameter Value 𝐿௜ 2.7 meters 𝑐௔ 0.1 𝑚 1200kg 𝑐௥ 0.1 𝑑𝑡 Sampling time, 10 ms  𝑟௘௙௙_௜ 0.19 m 𝐺𝑅௜ 0.09 
 

 
 

 
Figure 5: Applied engine torque (N.m) and steering wheel 
rate (rad/s) per milliseconds. Commands applied for 42 
seconds. 

 
Figure 6: Trajectory output of vehicle longitudinal and 
lateral bicycle model in cartesian plate, meters. Simulink vs 
CAVPsim. 
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2.4 Example Simulation Scenario in 
CAVPsim 

Features of CAVPsim are expected to support 
simulation of CAV operation scenarios and provide a 
set of tools for three components in CAV research 
area, namely vehicle model, communication model 
and computation model. To present a practical 
example, we simulate a simple cooperative decision-
making scenario with two participating vehicles in a 
common environment, sharing their trajectory created 
by their local planner. CAVs are intent to compare 
their own trajectory with other participants to find 
possible crossings. If a crossing is detected, the time 
to reach the crossing for each vehicle would be 
calculated on their own computation model on which 
a decision-making algorithm is integrated. The 
vehicle with smaller arrival time keeps its trajectory 
unchanged while the other one updates its trajectory 
speed profile to prevent unsafe entry into the collision 
area. They share their decision as well as their 
trajectory via the communication model. We define a 
circle with radius of minimum safe distance centre at 
crossing point of trajectories as collision area. We 
produce this scenario and present some monitoring 
features of CAVPsim. We have run this simulation on 
 

 
Figure 7: Initializing simulation, vehicles with their on-
board planner trajectory generation. 

 
Figure 8: Running simulation, execution of path tracking 
independently. 

 
Figure 9: Running simulation, execution of updated speed 
profile through cooperative decision-making mechanism in 
CAVPsim. 

CORE i7 8th Gen., 16Mb RAM, computer with ROS 
melodic installed on Ubuntu 18.04.  Figure (7) to (9) 
present scenario simulation visualization on RVIZ, 
ROS 3D visualization tool. Vehicles are visualized as 
green cubes and trajectories are generated 
independently by their on-board global planner. 

We define a simple cooperative decision-making 
status message to share between agents for the 
purposes of this simulation, as shown in Table (2). 

Table 2: Each vehicle would generate this status message 
(in computation model) and share it with other participants 
via the CAVPsim communication model 

NAME DESCRIPTION 

COLLISSION_DETECT True if crossing detected 

COLLISION_DISTANC Ego vehicle to crossing point 
distance in meter 

COLLISION_TIME Ego vehicle time to arrive to 
crossing point in seconds 
considering its default speed, 
5 m/s 

COLLISION_SUBJECT MAC address of vehicle 
which collision with 
predicted. 

LAST_DECISION Ego vehicle last decision to 
share with the other 
participant. UNKNOWN=0, 
UPDATING_PATH=1, 
IDLE=2 

Figures (10) to (13) present some of the measuring 
and monitoring results of this simulation. The 
collision detected by each vehicle has resulted from 
comparing ego trajectory with the other participant’s 
trajectory. A 0.52 second delay between awareness of 
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both participants of crossing trajectory is presented in 
Figure (10) illustrating delay caused due to message 
passing transmit rate (0.1) seconds, delay caused by 
computation model for crossing point detection 
search effort on trajectory points and communication 
process time delay as normal distributed value with 
mean of 0.1 second and deviation of 0.05 seconds. 
Figure (11) shows the time difference between time 
stamp of sent messages of vehicle A and time stamp 
of same messages arriving on vehicle B on-board 
computation. The discussed time difference for 82 
sequences of vehicle A messages passed in this 
simulation illustrated in Figure (11) shows stochastic 
behaviour of process delay as expected. 

 
Figure 10: Collision detection flag message per time shared 
by both vehicles over the CAVPsim communication model. 
0.52 seconds time difference on two message time stamps 
is summation of delays caused by transmission rate, 
communication process delays and computation effort 
delays. 

 
Figure 11: The time difference in seconds between 82 
sequences of vehicle A transmitted messages and same 
received ones on vehicle B on-board computation. 

 
Figure 12: Change in decision per time, of vehicle A to 
update its ego trajectory to avoid unsafe entry into the 
collision area. Vehicle B notified of vehicle A’s decision 
after 0.69 seconds. The logic of deciding who will change 
its trajectory is evaluated on both vehicles’ onboard 
computation models, which means vehicle B is aware that 
it is not the one changing its decision. 

 
Figure 13: Speed profile in m/s per waypoint index. Vehicle 
A updates its trajectory to avoid unsafe entry to detected 
collision area. It starts with lower speed than its default 
value, 5 m/s until vehicle B passes the area. Vehicle B 
doesn’t change its speed profile according to the decision-
making logic since vehicle B requires smaller time to pass 
the area, it preserves its default speed profile. 

With this very simple scenario we have illustrated 
the facility to simulate message passing between 
communicating vehicles in a common environment, 
together with the implementation of a simple decision 
maker for our scenario case. This can be extended to 
more complicated decision-making tasks by 
imposing set of different driving scenarios. Proposing 
generic models in CAVPsim and using benefits of 
ROS environment and open-source full stack self-
driving software like AUTOWARE promises rapid 
development of CAV related solutions.  The effort for 
researchers would be to set parameters for those 
models and to develop decision making and/or 
planning algorithms into computation model node. 
Those computation model nodes in case of 
complexity can also execute on distributed machines 
using benefit of ROS environment, so integration of 
complex decision-making algorithms on distributed 
machines would be straightforward. We also note that 
the computation model developed in CAVPsim 
which basically would be place for our decision-
making algorithm together with communication 
messages defined during the development could port 
on real vehicles with almost no changes in 
implementation and code integration. The real 
computation of each vehicle would run this 
computation model and its message exactly the way 
we run it in simulation. The last feature also reduces 
HIL tests effort. 

3 CONCLUSIONS 

CAVPsim provides a simulation facility that consists 
of three fundamental models, namely the 
communication, computation and vehicle models, 
which can be used together with the user’s decision-
making algorithms for observing collective behaviour 
of multiple CAVs operating over a ROS environment. 
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To illustrate CAVPsim interaction with ROS and 
Linux kernel layer we can refer to Figure (14). 

 
Figure 14: CAVPsim on top of ROS which also uses some 
general ROS tools. 

Message passing is a crucial requirement to 
develop a distributed algorithm. It is also clear that 
the ability of swift transition from simulation 
environment to deployment is a fundamental 
requirement. The ability to run distributed application 
on single or multiple connected machines promises 
effortless transition from development and simulation 
stage in CAVPsim to deployment stage, meaning, we 
can simply replace the CAV models with real CAVs 
running distributed application next to their onboard 
processing of sensors and actuators. CAVPsim can 
make use of a real data set of perception information 
such as HD maps, object detection methods etc. as 
well as from any ROS based software stack like 
AUTOWARE. This also points to the opportunities 
that CAVPsim provides for rapid prototyping projects 
based on full stack AV driving software. 

3D visualization of the vehicle movement in an 
operation environment like HD map, plotting tools 
etc. are generally mandatory for analysing variables 
of interest which should be considered as simulator 
features. Ability to import data for benchmark and/or 
export data in a widely acceptable data structure 
would also boost the benchmark study. CAVPsim 
uses benefits of ROS built-in tools next to extra tools 
to interact with third party resources such as RVIZ for 
3D visualization, or data export and import tools 
to/from MAT and CSV files from third party 
resources like Matlab/Simulink. 

We aim to proceed with future studies on 
CAVPsim in two main directions: 

- Development of CAVPsim environment by 
adding different models/modelling 
approaches for the three main components and 
development of data visualization/monitoring 
tools. 

- Developing generic scenario generator 
modules like crossing scenarios, round-about, 
etc. 

We believe improvement in both aspects would 
result in great contribution to CAV researcher’s 
community to get in touch with current AV driving 
full stack software. 
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