ACKNOWLEDGEMENTS 
This study was supported by award 2017042 from the 
National Science Foundation to the senior authors.   
REFERENCES 
Abrahamson, D., & Sánchez-García, R. (2016). Learning is 
moving  in  new  ways:  the  ecological  dynamics  of 
mathematics  education.  Journal of the Learning 
Sciences,  25(2),  203–239. 
doi:10.1080/10508406.2016.1143370 
Alibali,  M.  W., &  Nathan, M.  J.  (2012).  Embodiment  in 
Mathematics  Teaching  and  Learning:  Evidence  From 
Learners’  and  Teachers'  Gestures.  Journal of the 
Learning Sciences,  21(2),  247–286. 
doi:10.1080/10508406.2011.611446 
Barsalou,  L.  W.  (2008).  Grounded  cognition.  Annual 
Review of Psychology,  59,  617–645. 
doi:10.1146/annurev.psych.59.103006.093639 
Barsalou,  L.  W.  (2009).  Simulation,  situated 
conceptualization,  and  prediction.  Philosophical 
Transactions of the Royal Society of London. Series B, 
Biological Sciences,  364(1521),  1281–1289. 
doi:10.1098/rstb.2008.0319 
Berland, M. (2016). Making, tinkering and computational 
literacy. In  Makeology: Makers as Learners  (Vol. 2, 
pp. 196–205). Routledge. 
Berland,  M., Martin, T.,  Benton,  T., Petrick Smith,  C., & 
Davis,  D.  (2013).  Using  learning  analytics  to 
understand  the  learning  pathways  of  novice 
programmers. Journal of the Learning Sciences, 22(4), 
564–599. doi:10.1080/10508406.2013.836655 
Black,  J.  B.,  Segal,  A.,  &  Vitale,  J.  (2012).  Embodied 
cognition  and  learning  environment  design.  In  D. 
Jonassen & S. Lamb (eds.), Theoretical Foundations of 
Student-centered Learning Environments.  New  York: 
Routledge. 
Boulenger,  V.,  Hauk,  O.,  &  Pulvermüller,  F.  (2009). 
Grasping  ideas  with  the  motor  system:  semantic 
somatotopy in idiom comprehension. Cerebral Cortex, 
19(8), 1905–1914. doi:10.1093/cercor/bhn217 
Davidsen, J., & Ryberg, T. (2017). This is the size of one 
meter“:  Children”s  bodily-material  collaboration. 
International Journal of Computer-Supported 
Collaborative Learning,  12(1),  65–90. 
doi:10.1007/s11412-017-9248-8 
Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair 
programming: under what conditions is it advantageous 
for  middle  school  students?  Journal of Research on 
Technology in Education,  46(3),  277–296. 
doi:10.1080/15391523.2014.888272 
Fadjo,  C.  L.  (2012).  Developing computational thinking 
through grounded embodied cognition  (Doctoral 
dissertation). Columbia University. 
Gallese, V. (2001). The’shared manifold'hypothesis. From 
mirror  neurons  to empathy.  Journal of consciousness 
studies. 
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). 
Action  recognition  in  the  premotor  cortex.  Brain: A 
Journal of Neurology,  119 ( Pt 2),  593–609. 
doi:10.1093/brain/119.2.593 
Gardner, H. (1992). Multiple intelligences. academia.edu. 
Glenberg, A. M., Webster, B. J., Mouilso, E., Havas, D., & 
Lindeman,  L.  M.  (2009).  Gender,  Emotion,  and  the 
Embodiment  of  Language  Comprehension.  Emotion 
review,  1(2),  151–161. 
doi:10.1177/1754073908100440 
Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). 
Gesturing  gives  children  new  ideas  about  math. 
Psychological Science,  20(3),  267–272. 
doi:10.1111/j.1467-9280.2009.02297.x 
Hauk,  O.,  Johnsrude,  I.,  &  Pulvermüller,  F.  (2004). 
Somatotopic representation of  action  words  in human 
motor  and  premotor  cortex.  Neuron,  41(2),  301–307. 
doi:10.1016/S0896-6273(03)00838-9 
Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., 
& Koziupa, T. (2014). Collaborative embodied learning 
in  mixed  reality  motion-capture  environments:  Two 
science  studies.  Journal of educational psychology, 
106(1), 86–104. doi:10.1037/a0034008 
Johnson-Glenberg,  M.  C.,  &  Megowan-Romanowicz,  C. 
(2017).  Embodied  science  and  mixed  reality:  How 
gesture  and  motion  capture  affect  physics  education. 
Cognitive Research: Principles and Implications, 2(1), 
24. doi:10.1186/s41235-017-0060-9 
Johnson-Glenberg,  M.  C.,  Megowan-Romanowicz,  C., 
Birchfield, D. A., & Savio-Ramos, C. (2016). Effects of 
embodied learning and digital platform on the retention 
of  physics  content:  centripetal  force.  Frontiers in 
Psychology, 7, 1819. doi:10.3389/fpsyg.2016.01819 
Kuo,  C.-Y.,  &  Yeh,  Y.-Y.  (2016).  Sensorimotor-
Conceptual  Integration  in  Free  Walking  Enhances 
Divergent  Thinking  for  Young  and  Older  Adults. 
Frontiers in Psychology,  7,  1580. 
doi:10.3389/fpsyg.2016.01580 
Leung, A. K. Y., Kim, S., Polman, E., Ong, L. S., Qiu, L., 
Goncalo, J. A., & Sanchez-Burks, J. (2012). Embodied 
metaphors and creative “acts”. Psychological Science, 
23(5), 502–509. doi:10.1177/0956797611429801 
Lewis, C. M., & Shah, N. (2015). How equity and inequity 
can emerge in pair programming. In Proceedings of the 
eleventh annual International Conference on 
International Computing Education Research - ICER' ' 
’15  (pp.  41–50).  New  York,  New  York,  USA:  ACM 
Press. doi:10.1145/2787622.2787716 
Lindgren,  R.,  &  Johnson-Glenberg,  M.  (2013). 
Emboldened by Embodiment. Educational Researcher, 
42(8), 445–452. doi:10.3102/0013189X13511661 
Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). 
Enhancing learning and engagement through embodied 
interaction  within  a  mixed  reality  simulation. 
Computers & education,  95(95),  174–187. 
doi:10.1016/j.compedu.2016.01.001 
Maguire, P., Maguire, R., & Hyland, P. (2014). Enhancing 
collaborative learning using paired-programming: Who 
benefits?  The Ireland Journal of Teaching and 
Learning in Higher Education, 6
(2), 141(1)–141(25).