Christi, A., Groce, A., & Gopinath, R. (2017). Resource ad-
aptation via test-based software minimization. 2017
IEEE 11th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), 61–70.
https://doi.org/10.1109/SASO.2017.15
De Lemos, R., Giese, H., Müller, H. A., Shaw, M., Anders-
son, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas,
N. M., Vogel, T., & others. (2013). Software engineer-
ing for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive
Systems II (pp. 1–32). Springer.
Giese, M., Mistrzyk, T., Pfau, A., Szwillus, G., & Von
Detten, M. (2008). AMBOSS: a task modeling ap-
proach for safety-critical systems. In Engineering Inter-
active Systems (pp. 98–109). Springer.
Gotz, S., Gerostathopoulos, I., Krikava, F., Shahzada, A., &
Spalazzese, R. (2015). Adaptive Exchange of Distrib-
uted Partial Models@run.time for Highly Dynamic
Systems. 2015 IEEE/ACM 10th International Sympo-
sium on Software Engineering for Adaptive and Self-
Managing Systems, 64–70. https://doi.org/10.1109/
SEAMS.2015.25
Green, T. R. G., & Petre, M. (1996). Usability analysis of
visual programming environments: A ‘cognitive di-
mensions’ framework. Journal of Visual Languages &
Computing, 7(2), 131–174.
Guerrero-García, J., González-Calleros, J., & Vander-
donckt, J. (2012). A Comparative Analysis of Task
Modeling Notations. Acta Universitaria, 22, 90–97.
Hallsteinsen, S., Hinchey, M., Park, S., & Schmid, K.
(2008). Dynamic software product lines. Computer,
41(4), 93–95.
Hartson, H. R., & Gray, P. D. (1992). Temporal aspects of
tasks in the user action notation. Human-Computer In-
teraction, 7(1), 1–45.
Johnson, H., & Hyde, J. (2003). Towards modeling individ-
ual and collaborative construction of jigsaws using task
knowledge structures (TKS). ACM Transactions on
Computer-Human Interaction (TOCHI), 10(4), 339–387.
Keeney, J., & Cahill, V. (2003). Chisel: A policy-driven, con-
text-aware, dynamic adaptation framework. Proceedings
POLICY 2003. IEEE 4th International Workshop on Pol-
icies for Distributed Systems and Networks, 3–14.
Kieras, D. (2004). GOMS Models for Task Analysis. The
Handbook of Task Analysis for Human-Computer In-
teraction, Ed. Dan Diaper, Neville A. Stanton. Law-
rence Erlbaum Associates.
Larkin, K., Anderson, R., Dykstra, T., & Smith, S. (2021).
Filters in ASP.NET Core. https://docs.microsoft.com/
en-us/aspnet/core/mvc/controllers/filters?view=aspnet
core-5.0
Limbourg, Q., & Vanderdonckt, J. (2004). Comparing task
models for user interface design. The Handbook of Task
Analysis for Human-Computer Interaction, 6, 135–154.
Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L.,
& Lopez-Jaquero, V. (2004). USIXML: A language
supporting multi-path development of user interfaces.
IFIP International Conference on Engineering for Hu-
man-Computer Interaction, 200–220.
Lucas, W. T., Xu, J., & Babaian, T. (2013). Visualizing
ERP Usage Logs in Real Time. ICEIS (3)
, 83–90.
Martinie, C., Palanque, P., Bouzekri, E., Cockburn, A.,
Canny, A., & Barboni, E. (2019). Analysing and
demonstrating tool-supported customizable task nota-
tions. Proceedings of the ACM on Human-Computer
Interaction, 3(EICS), 1–26.
Martinie, C., Palanque, P., & Winckler, M. (2011). Struc-
turing and composition mechanisms to address scalabil-
ity issues in task models. IFIP Conference on Human-
Computer Interaction, 589–609.
Molina, A. I., Redondo, M. A., Ortega, M., & Lacave, C.
(2014). Evaluating a graphical notation for modeling
collaborative learning activities: A family of experi-
ments. Science of Computer Programming, 88, 54–81.
Moody, D. (2009). The “physics” of notations: Toward a
scientific basis for constructing visual notations in soft-
ware engineering. IEEE Transactions on Software En-
gineering, 35(6), 756–779.
Nah, F. F.-H. (2004). A study on tolerable waiting time:
How long are web users willing to wait? Behaviour &
Information Technology, 23(3), 153–163.
NBomber. (2021). https://nbomber.com/
Paterno, F., Mancini, C., & Meniconi, S. (1997). Concur-
TaskTrees: A diagrammatic notation for specifying task
models. Human-Computer Interaction INTERACT’97,
362–369.
Perttunen, M., Jurmu, M., & Riekki, J. (2007). A QoS
model for task-based service composition. Proc. 4th In-
ternational Workshop on Managing Ubiquitous Com-
munications and Services, 11.
Rigole, P., Clerckx, T., Berbers, Y., & Coninx, K. (2007).
Task-driven automated component deployment for am-
bient intelligence environments. Pervasive and Mobile
Computing, 3(3), 276–299.
Sousa, J. P., Poladian, V., Garlan, D., Schmerl, B., & Shaw,
M. (2006). Task-based adaptation for ubiquitous com-
puting. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C (Applications and Reviews), 36(3),
328–340. https://doi.org/10.1109/TSMCC.2006.871588
Tarby, J.-C., & Barthet, M.-F. (1996). The DIANE+
Method. CADUI, 96, 95–119.
Van Der Veer, G. C., Lenting, B. F., & Bergevoet, B. A.
(1996). GTA: Groupware task analysis—Modeling
complexity. Acta Psychologica, 91(3), 297–322.
Vidani, A. C., & Chittaro, L. (2009). Using a task modeling
formalism in the design of serious games for emergency
medical procedures. 2009 Conference in Games and
Virtual Worlds for Serious Applications, 95–102.
Vigo, M., Santoro, C., & Paternò, F. (2017). The usability
of task modeling tools. 2017 IEEE Symposium on Vis-
ual Languages and Human-Centric Computing
(VL/HCC), 95–99.
von Rosing, M., White, S., Cummins, F., & de Man, H.
(2015). Business Process Model and Notation-BPMN.
Xu, M., & Buyya, R. (2019). Brownout approach for adap-
tive management of resources and applications in cloud
computing systems: A taxonomy and future directions.
ACM Computing Surveys (CSUR), 52(1), 1–27.