malware-training-detection. Online; accessed
November 2021.
Ali, M., Hamid, M., Jasser, J., Lerman, J., Shetty, S., and
Di Troia, F. (2021b). MSA-gen. https://github.com/
SJSU-PHMM/msa-gen. Online; accessed November
2021.
Alipour, A. A. and Ansari, E. (2020). An advanced profile
hidden markov model for malware detection. Intelli-
gent Data Analysis, 24(4):759–778.
Alkhateeb, E. M. S. (2017). Dynamic malware detection us-
ing api similarity. In 2017 IEEE International Confer-
ence on Computer and Information Technology (CIT),
pages 297–301. IEEE.
Alqurashi, S. and Batarfi, O. (2017). A comparison between
api call sequences and opcode sequences as reflectors
of malware behavior. In 2017 12th International Con-
ference for Internet Technology and Secured Transac-
tions (ICITST), pages 105–110. IEEE.
Attaluri, S., McGhee, S., and Stamp, M. (2009). Profile hid-
den markov models and metamorphic virus detection.
Journal in computer virology, 5(2):151–169.
Biopython (2021). Biopython. https://biopython.org/. On-
line; accessed November 2021.
Buster (2021). Buster Sandbox Analyzer. https://bsa.
isoftware.nl/. Online; accessed November 2021.
Damodaran, A., Di Troia, F., Visaggio, C. A., Austin,
T. H., and Stamp, M. (2017). A comparison of
static, dynamic, and hybrid analysis for malware de-
tection. Journal of Computer Virology and Hacking
Techniques, 13(1):1–12.
Fu, W., Pang, J., Zhao, R., Zhang, Y., and Wei, B.
(2008). Static detection of api-calling behavior from
malicious binary executables. In 2008 International
Conference on Computer and Electrical Engineering,
pages 388–392. IEEE.
Garg, V. and Yadav, R. K. (2019). Malware detection based
on api calls frequency. In 2019 4th International Con-
ference on Information Systems and Computer Net-
works (ISCON), pages 400–404. IEEE.
IMDEA Software Istitute (2013). Malicia. http://www.
malicia-project.com/dataset.html. Online; accessed
November 2021.
Kirat, D. and Vigna, G. (2015). Malgene: Automatic ex-
traction of malware analysis evasion signature. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 769–
780.
Mahmood, M. (2021). CallObfuscator: Obfuscate specific
windows apis with different apis. https://github.com/
d35ha/CallObfuscator. Online; accessed November
2021.
McKnight, J. (2017). The evolution of ransomware and
breadth of its economic impact. PhD thesis, Utica Col-
lege.
Pranamulia, R., Asnar, Y., and Perdana, R. S. (2017).
Profile hidden markov model for malware classifi-
cation—usage of system call sequence for malware
classification. In 2017 International Conference on
Data and Software Engineering (ICoDSE), pages 1–
5. IEEE.
Ravi, S., Balakrishnan, N., and Venkatesh, B. (2013).
Behavior-based malware analysis using profile hidden
markov models. In 2013 International Conference on
Security and Cryptography (SECRYPT), pages 1–12.
IEEE.
RDocumentation (2021). Aphid. https://www.
rdocumentation.org/packages/aphid/. Online;
accessed November 2021.
Sandboxie (2021). Sandboxie classic. https://
sandboxie-plus.com/sandboxie/. Online; accessed
November 2021.
Sasidharan, S. K. and Thomas, C. (2021). Prodroid—an an-
droid malware detection framework based on profile
hidden markov model. Pervasive and Mobile Com-
puting, 72:101336.
Sathyanarayan, V. S., Kohli, P., and Bruhadeshwar, B.
(2008). Signature generation and detection of mal-
ware families. In Australasian Conference on In-
formation Security and Privacy, pages 336–349.
Springer.
Sharif, M. I., Lanzi, A., Giffin, J. T., and Lee, W. (2008).
Impeding malware analysis using conditional code
obfuscation. In NDSS. Citeseer.
Singh, J. and Singh, J. (2018). Challenge of malware anal-
ysis: malware obfuscation techniques. International
Journal of Information Security Science, 7(3):100–
110.
Srivastava, A., Lanzi, A., and Giffin, J. (2008). System call
api obfuscation. In International Workshop on Re-
cent Advances in Intrusion Detection, pages 421–422.
Springer.
Stamp, M. (2017). Introduction to machine learning with
applications in information security. Chapman and
Hall/CRC.
Suenaga, M. (2009). A museum of api obfuscation on
win32. Symantec Security Response.
The Enigma Protector Developers Team (2021). Enigma
Protector. https://www.enigmaprotector.com/. Online;
accessed November 2021.
Uppal, D., Sinha, R., Mehra, V., and Jain, V. (2014). Mal-
ware detection and classification based on extraction
of api sequences. In 2014 International conference
on advances in computing, communications and in-
formatics (ICACCI), pages 2337–2342. IEEE.
Vemparala, S. (2015). Malware detection using dynamic
analysis. Master’s thesis.
Vemparala, S., Di Troia, F., Visaggio, A. C., Austin, T. H.,
and Stamp, M. (2016). Malware detection using dy-
namic birthmarks. In Proceedings of the 2016 ACM on
international workshop on security and privacy ana-
lytics, pages 41–46.
Wadkar, M., Di Troia, F., and Stamp, M. (2020). Detect-
ing malware evolution using support vector machines.
Expert Systems with Applications, 143:113022.
You, I. and Yim, K. (2010). Malware obfuscation tech-
niques: A brief survey. In 2010 International con-
ference on broadband, wireless computing, communi-
cation and applications, pages 297–300. IEEE.
Profile Hidden Markov Model Malware Detection and API Call Obfuscation
695