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Abstract: Cloud-native systems, fueled by microservice architecture, provide several benefits to enterprises. These
benefits include scalability, short deployment cycles, and flexibility for evolution. Most benefits come from
microservices’ independence and decentralization. However, the pay-off comes as a lack of a centralized view
of the overall system’s architecture. The system’s data model is separated among and partially replicated
between each microservice, requiring extra effort to create a single view on the context map. Additionally,
while a microservice’s API and its interaction can be statically documented (i.e., communication diagram),
system evolution makes it difficult to maintain. As a result, modifications to the system can decay from the
original intended design, and the changes will be obscured by the lack of an up-to-date centralized view. To
address this, we propose a method of software architecture reconstruction based on static code analysis of the
microservice mesh, generating a communication diagram, context map, and microservice-specific bounded
contexts. This gives developers and Development and Operations engineers (DevOps) a centralized view of
how the overall program works, useful for furthering system comprehension and observation.

1 INTRODUCTION

Cloud-native systems build on the Microservice Ar-
chitecture (MSA). The use of this architecture is more
or less standard for enterprise software development.
Microservices break the application functionality into
many small, independently developed, and deployed
services that communicate with each other. The in-
tegration and business logic are implemented within
each microservice, and thus no centralized model is
agreed upon. Microservices are aware of the pro-
ducer interfaces, which introduces loose coupling. As
a result, microservices can be developed, deployed,
and scaled independently, leading due to more rapid
development and update cycles and improved perfor-
mance of the entire system.

Due to the broad decentralization, any overall sys-
tem documentation can quickly become out of date.
A developer new to the system will likely need to
parse through documentation and code from different
projects, possibly using different technologies, cod-
ing styles, and conventions. Such complex readabil-
ity leads to increased costs: time that could have been
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spent on development has to be spent on learning how
a system works. It would be difficult to identify spe-
cific system concerns on the overall system since each
concern is implemented individually among the sepa-
rate microservices.

One specific feature of the microservice approach
is that there is no global data model as that would be a
form of coupling, which microservices aim to avoid.
This makes individual service development faster and
the whole system flexible and loosely coupled, but it
can lead to inconsistencies in how each microservice
views and uses its data. Entities are used in certain mi-
croservices and not others, and even when they share
entities, microservices do not always need to use all
of their properties. Therefore, the extent of the data
stored about any single entity and where and how it
is used in the system is hidden among the individual
services. Creating and updating domain models and
other documentation artifacts help to alleviate this,
but in practice, the documentation does not always
remain current, especially in the decentralized envi-
ronment common for microservices.

Another hidden aspect is inter-service commu-
nication. Without an integration layer, microservice
evolution is not affected by other microservices, but
there is no central location for the business logic of the
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broader functionality. For example, to know which
services call each other to determine services affected
by an API update, a developer would have to check
each individual service for calls to the others.

Practitioners have well noticed the challenges
with microservices. In particular, a large survey on
microservice industry practice (Bogner et al., 2021)
revealed a missing system-centric view as one of the
dominant challenges. This challenge is followed by
others, such as outdated or possibly missing docu-
mentation and inter-service dependencies, causing a
ripple effect. Given that the systems evolve, there is a
clear gap in instruments that the industry practitioners
need from what they currently have.

To address issues of hidden information and chal-
lenges or microservice practitioners, we propose
a method of Software Architecture Reconstruction
(SAR) for microservices. We have introduced this
method in the Late-Breaking Results (Bushong et al.,
2021). This paper details our method, which uses
static code analysis to automatically generate context
maps and inter-service communication diagrams for
microservice projects. Using this method, we recover
the data model and communication logic of microser-
vice systems. We demonstrate our method’s effective-
ness with a case study on a benchmark system.

In the remainder of the paper, we discuss back-
ground and previous work in sections two. We de-
scribe the our method, its rationale and outline our
approach and prototype Prophet, in section three. We
demonstrate our approach’s viability with a case study
in section four. Finally, we discuss the impact and
conclusions in section five.

2 RELATED WORK

As the mainstream approach to enterprise applica-
tion development (NGINX, Inc., 2015), MSA offers
numerous benefits owing much to the independence
of the individual services. Independent service scal-
ability improves performance; independent service
deployability reduces the complexity of deployment
processes and reduces the time required to push up-
dates. Independent service development allows each
piece of functionality to be developed using the most
appropriate tools (Cerny et al., 2018).

Containerization is often the underlying deploy-
ment mechanism, usually by means of a cloud-based
container orchestration framework such as Kuber-
netes. To more easily handle management and mon-
itoring concerns such as service discovery, scaling,
and load balancing, another tool such as OpenShift
is used above the cloud-based container framework.

The domain models used in MSA reflect the
services’ independence. The most common MSA
approach is to take a single problem domain and
separate it into bounded contexts. The idea of a
bounded context originates within Domain-Driven
Design (DDD) (Evans, 2014). Instead of creating a
single, unifying model for an entire large system, the
model is split into multiple bounded contexts. In each
bounded context, entities are defined in the way most
useful for that context; this way, anyone working with
an entity in one context does not need to worry about
the details of that entity’s usage in other contexts since
they can use their own definition (Evans, 2014).

This separation is well-suited to the MSA mind-
set of independent services. Each microservice repre-
sents a different bounded context of the overall sys-
tem, created and maintained by a separate team for
that service’s particular needs (Cerny et al., 2018).
Entities in a microservice’s bounded context can be
created with only those properties needed within that
particular service, even if it uses other properties in
the wider system. This keeps the services decoupled.
However, the lack of a centralized model may require
restating information across the services. It becomes
difficult to maintain a single view of how the entire
system represents its data and the business rules and
policies applicable to that data (Cerny et al., 2018).

When designing bounded contexts in DDD, it is
useful to create a context map, a diagram that shows
the bounded contexts and their entities’ relationships
across the entire system (Evans, 2014). We aim to
extract context maps and individual bounded contexts
from existing systems, yielding a view of how the sys-
tem and individual microservices view the entities.

The goal of obtaining a centralized view of how
a system works is known as commonly referred
to as Software Architecture Reconstruction (SAR)
(Rademacher et al., 2020a). SAR derives a repre-
sentation of software architecture from artifacts like
documentation or source code. SAR is a key step in
architecture verification, conformance checking, and
trade-off analysis (Rademacher et al., 2020a). Be-
sides these, SAR itself is relevant in combating soft-
ware architecture degradation, the process wherein
changes to a software system shift the architecture
away from what was originally intended. In the rest of
this section, we will examine existing approaches to
SAR and its applications to architecture degradation.

There are three broad categorizations for SAR
methods: dynamic or runtime analysis, where a tool
constructs the view at runtime; static analysis, where
the view is constructed from artifacts available be-
fore deployment; and manual analysis, where a hu-
man examines the system and manually constructs a
representation of it. Manual analysis, while clearly
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not an approach to creating an automated tool, is an
important step in proving a proposed method or val-
idating the results; we performed a manual analysis
in our case study to compare our results. Ratemacher
et al. (Rademacher et al., 2020a) manually collected
architecture-related artifacts, constructed a canonical
representation of the data model, and based on that
fused module views. They then performed archi-
tecture analysis on the results to answer hypotheses
about architecture implementations from the recon-
structed architecture information. We see this as a
promising direction to automate the SAR process.

2.1 Dynamic SAR

Dynamic analysis can operate on several different
runtime data sources. It has been used for a myriad
of end goals, ranging from analyzing runtime traces
extracted from logs in order to find timing errors
(Cinque et al., 2019) to extracting service dependency
graphs by extracting remote procedure calls from net-
work logs in a microservice mesh (Esparrachiari et al.,
2018) or by uncovering dependencies between moni-
tored metrics for components of a distributed system
(Thalheim et al., 2017).

Runtime analysis-based SAR has taken many
forms. One technique is to use a language’s in-
strumentation features to report data based on a
framework or custom-made annotations in a program,
which can then be analyzed at runtime. This data can
be used to model some concerns of a microservice
system by detecting where microservices call each
other. This approach has been used to model mi-
croservice dependencies and find incomplete test cov-
erage of calls across an entire microservice mesh (Ma
et al., 2018). This approach can also be used to de-
tect discrepancies between required and provided ser-
vice versions, as well as generate performance met-
rics from service error data (Ma et al., 2019).

Interceptors can be used to a similar end; (Mayer
and Weinreich, 2018) use the Spring framework’s in-
terceptors to monitor runtime calls between services
to generate an architectural view of a microservice
system. Similarly, calls could be intercepted and
rerouted through a security gateway (Torkura et al.,
2017), but this brought great performance overhead,
and violation of the distribution with potential bottle-
necks, and any approach that depends on code instru-
mentation, as in (Mayer and Weinreich, 2018), brings
additional development difficulty and overhead.

Another runtime approach is to utilize the under-
lying containerization engine. Since microservices
are often deployed using containers, this can be a
valuable source of information about the application’s

architecture. (Granchelli et al., 2017) query the con-
tainerization framework to retrieve calls between mi-
croservices at runtime. The extracted calls are used
along with deployment metadata collected from ser-
vice descriptors to create an architectural model for a
microservice system. This approach is limited in ex-
tracting further system concerns because not all infor-
mation is available through the containerization en-
gine, especially information relating to how the appli-
cation represents and operates on data.

These runtime analysis approaches benefit from
being able to access runtime data (like performance
metrics and real-time service calls), but they require
the system to be deployed and running and cannot op-
erate on the source code alone. For these reasons, we
turn to static analysis.

2.2 Static SAR

Static analysis can be performed on a system before it
is deployed, extracting information from existing ar-
tifacts that would otherwise have to be manually an-
alyzed. In particular, analyzing a program’s source
code has played a part in formal verification of a sys-
tem’s correctness (Chlipala, 2013; Albert et al., 2007)

It has also been applied in the realm of microser-
vices. It has been used to identify calls between mi-
croservices to generate security policy automatically
(Li et al., 2019). Also, it has been used to analyze
monolithic applications to recommend splits for con-
verting to microservices (Eski and Buzluca, 2018).
In generating a service dependency graph, (Espar-
rachiari et al., 2018) posit that source code analy-
sis is not sufficient since the deployment environment
may impact the actual dependencies a given deployed
module has. Furthermore, (Soldani et al., 2021) an-
alyzes docker configurations to understand the mi-
croservice deployment topology graph and then uses
this information for dynamic analysis to monitor and
determine interactions among components. However,
our goal is different from the previous two works; we
do not necessarily target every possible call in a sys-
tem for dependency detection; rather, we find the calls
that are part of the application’s business logic, and
for this purpose, the source code contains sufficient
information.

Source code is not the only artifact available for
static analysis. Ibrahim et al. use a project’s Docker-
files to search for known security vulnerabilities of the
container images being used, which they overlay on
the system topology extracted from Docker Compose
files to generate an attack graph showing how a secu-
rity breach could be propagated through a microser-
vice mesh (Ibrahim et al., 2019). This allows the cre-
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ation of a centralized security concern for the system,
but since it does not extend to source code, it can-
not include security flaws in the programs deployed
in the containers, only flaws with the images them-
selves. Another static source of information is in the
API definitions. Mayer and Weinreich use API defini-
tions generated by Swagger as an input to their archi-
tecture generation system, but their system is also de-
pendent on runtime data extracted from calls between
services (Mayer and Weinreich, 2018).

Another approach to pre-runtime SAR is to embed
a source of information into microservices in their de-
velopment. For example, (Salvadori et al., 2016) pro-
pose creating semantic microservices that expose in-
formation about their resources, allowing them to be
automatically composed. In this way, a centralized
view of microservice communication is always avail-
able. However, this approach depends on using a fun-
damentally different approach to development, and it
cannot be used to analyze existing codebases.

2.3 Software Architecture Degradation

Software architecture degradation is a phenomenon
where code changes cause the implemented archi-
tecture of a system to differ from its planned archi-
tecture (Baabad et al., 2020). This process goes by
many names, including architecture erosion (Perry
and Wolf, 1992), software degeneration (Hochstein
and Lindvall, 2005), etc., but the principle is the same:
the original intent for the architecture is not kept.

Software architecture degradation has many
causes. Baabad et al., in a survey of open-source soft-
ware systems, identified the most common of these
causes. Degradation tends to happen when the rapid
system changes cause small issues to go unnoticed
when the system grows in complexity through new
features or unforeseen design changes. These changes
occur when developers have a limited understanding
of the overall architecture or are not dedicated long-
term to the project. It also happens when pressures
of time and deadlines cause suboptimal and ostensi-
bly temporary solutions to become a permanent part
of the system (Baabad et al., 2020).

While the issues that tend to cause software archi-
tecture degradation overlap with more general issues
of code practice, Hochstein and Lindvall note that the
actual code that causes the offending changes to the
architecture may be functionally correct in and of it-
self (Hochstein and Lindvall, 2005). Therefore, tradi-
tional debuggers and code analysis tools may not be
sufficient for combating this issue since the problems
only become apparent at higher levels of abstraction
than the tools operate at.

Because traditional code analysis tools are insuf-
ficient for countering software architecture degrada-
tion, specific techniques have been developed. In their
study, Baabad et al. sorted these techniques into sev-
eral broad categories. The four most common cate-
gories which contained a majority of the approaches
were tools that detected degradation by various met-
rics (e.g., measuring stability or cohesion/coupling
measures), approaches based on defining and enforc-
ing architectural rules, direct methods of detecting
problems through heuristics and known code or ar-
chitecture smells, and methods based on architecture
recovery/reconstruction (Baabad et al., 2020). Of the
four categories, our approach is most relevant to the
last category since it is a SAR-based tool; none of the
existing tools in this category are designed to recover
the architecture of a microservice-based system.

3 OUR SAR METHOD

The need for our approach is twofold. First, it fills the
niche of a SAR tool entirely dependent on static anal-
ysis, rather than dynamic analysis, that is specifically
suited for microservices. Particularly, it identifies
HTTP calls between individual microservices with-
out the need for runtime analysis. These identified
calls allow us to extract a view of the system architec-
ture before it is deployed, whereas other methods re-
quire a deployed system (Mayer and Weinreich, 2018;
Granchelli et al., 2017; Esparrachiari et al., 2018;
Torkura et al., 2017). Using this method, developers
can get an updated view of the system’s service APIs
and service interactions as the code changes, rather
than waiting for deployments. This API/interaction
view was identified by (Mayer and Weinreich, 2017)
as one of the most important aspects of a microservice
monitoring tool. This view also corresponds to the
service viewpoint identified by (Rademacher et al.,
2020b) as one of the fundamental viewpoints to be
obtained from the SAR process on microservice sys-
tems. Furthermore, we include a feature to extract
the bounded context for each individual microservice,
then combine them into a single context map for the
entire system. It will combine entities that are shared
across multiple microservices into a single combined
entity, preserving all properties and relationships the
entity is part of across the entire system. This view
corresponds to the domain viewpoint also identified
by (Rademacher et al., 2020b), and to our knowledge,
ours is the only microservice-oriented SAR tool to in-
clude this viewpoint.

The second role is more specific to detecting and
fixing software architecture degradation. Microser-
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vices, in particular, are vulnerable to architecture
degradation; their development is characterized by
rapid evolution by developers who specialize in a sub-
set of the microservices of the whole system, perhaps
lacking knowledge of the overall view. As discussed
previously, these are major risk factors for a system to
experience architecture erosion (Baabad et al., 2020).
Our method is meant to be a complement to other
methods to combat software architecture degradation.
As a visual tool, it is useful to get a view of the sys-
tem architecture as-is, which can be used to compare
against the planned system architecture. Developers
can use this as a first warning to detect if the architec-
ture has drifted from the original plan.

Our approach takes place in two broad phases.
A context map is built from the individual bounded
contexts extracted from each microservice in the first
phase. In the second phase, calls between the services
are found to construct a communication diagram.

3.1 Context Map

Creating a context map consists of two parts. First,
each microservice project’s bounded context has to
be created, and second, those bounded contexts are
combined into a context map for the entire system.

Extracting a bounded context from each microser-
vice requires each service to be analyzed with static
analysis. We perform this primarily with source code
analysis, although bytecode analysis is also possible
for languages with intermediate bytecode representa-
tions; we perform bytecode analysis for Java projects,
for example. The goal of this first analysis is to extract
a list of all local classes used in the project.

Once the classes have been identified, the next
goal is to determine which of them are serving as data
entities and which are not; for example, classes acting
as REST controllers or internal services need to be fil-
tered out. This is where we use enterprise standards to
our advantage; development frameworks use standard
components and constructs involving annotation de-
scriptors that indicate a class’s semantic purpose. For
instance, there are multiple standards for persistence,
input validation, transaction boundaries, synchroniza-
tion, layering, and security. We use these descriptors
to identify which classes are acting as entities. Even
though we reference mostly Java, similar standards
are adopted across platforms.

After the entities are identified, the bounded con-
text of the microservice can be built. This is done
by identifying the relationships the entities have with
each other. These relationships have three different
components, which we extract using static analysis:
the types involved in the relationship (i.e., the entities

that are on either side of the relationship), the multi-
plicity of the relationship, and the directionality of the
relationship. Identifying the types is done on the basis
of the type names of the entities’ fields, the multiplic-
ity can be determined by whether or not the field is a
collection, and its directionality can be determined by
whether or not there is a corresponding field in both
of the entities involved or in only one entity.

Using the bounded contexts for all microservices,
a context map for the entire system needs to be gener-
ated by merging the bounded contexts together. Since
the mesh services should be operating on some of the
same entities, the entities in each microservice can be
merged by detecting if they have the same or similar
names. Different bounded contexts may have differ-
ent purposes for the entities they share and so may re-
tain different fields from each other. Therefore, the
next step is to merge the fields of merged entities.
Fields with the same or similar names and the same
data type are merged into a single field in the merged
entity, while non-matching fields from all the source
entities can simply be appended to the merged entity.
The result is a context map that represents the scope
of all entities used in the mesh.

3.2 Communication Diagram

After the context map is created, the next step is
to create the communication diagram. The code is
analyzed again using static analysis to find HTTP
calls among the microservices. This consists of two
phases: identifying each service’s API endpoints and
finding where these endpoints are called from other
services. With these two pieces of information, we
can create a graph showing the paths of communica-
tion between services. Regardless of the method of
extracting this information, certain metadata must be
collected regarding the endpoints and calls; this in-
cludes the path, HTTP method, parameters, and re-
turn type (or the expected return type for a call).

Our method depends on using the standardized
formats that enterprise standards use to encode this
information. In enterprise applications, exposing end-
points is most commonly done in code using func-
tions or annotations specific to a framework or library;
this means the definitions will appear consistent each
time they appear in code, so code analysis can be
used to identify the metadata about defined endpoints.
Likewise, in enterprise applications, HTTP requests
are made from an HTTP client. The client may be
part of the same framework used to define the end-
points, but developers will likely use the same client
for all calls in the system, even if it is not. Therefore,
code analysis again can identify the metadata about
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every request in the system by finding the function
call formats appropriate to the known HTTP library.
Once the requests have been identified, they can be
matched with the catalog of known service endpoints
collected earlier; a match means there is a communi-
cation path between the two services.

By extracting the communication diagram and ag-
gregated context diagram, we now have reconstructed
the system’s architecture in how the services commu-
nicate among themselves and how the system treats
its data. Next, we will describe how we implemented
our method.

3.3 Prophet Prototype

To demonstrate the proposed approach, we imple-
mented Prophet, an implementation of our approach
suited for Java projects using the Spring framework
for creating microservices. Prophet operates in three
phases: source selection, context map generation, and
communication diagram generation.

Prophet takes as input a GitHub repository con-
taining the microservices. It downloads the repository
and generates a list of the directories of each individ-
ual microservice project.

To create the bounded context of an individual mi-
croservice, Prophet gets all local classes in the project
using a source code analyzer; this results in the anal-
ysis context. Next, we filter this list down to classes
serving as data entities, which we call the system con-
text. For this demonstration, the filtering is done using
persistence annotations, including JPA standard entity
annotations, and annotations from Lombok, a tool for
automatically creating entity objects. The relation-
ships and their multiplicity and directionality are de-
termined as described above. The entities with their
fields and relationships are form the bounded context.

For the context map of the whole system, the en-
tities of the different microservices and their fields
are merged based on name similarity, as described
above. To detect name similarity, we use the WS4J
project, which uses the WordNet project (Christiane
and Brown, 2005). This creates a single context map
for the whole system.

For the communication diagram, we use the API
endpoints and their calls. Prophet scans for JAX-RS
annotations that define endpoints, combining class-
level and method-level annotations to create a defini-
tion for each endpoint that includes its path, method,
parameters, and return type. We then scan each
microservice for the use of the Spring Boot REST
client (or alternative) to find HTTP calls between the
services. If the call matches the path, parameters,
method, and return type, it is added to the diagram

as an edge between the two microservice nodes.
Once the bounded contexts, context map, and

communication diagram are completed, they are dis-
played to the user as graphs. The bounded contexts
are displayed as class diagrams showing each class’s
fields and the relationships between them, and the
communication diagram is shown as a graph with the
microservices as vertices and the calls between them
as edges, labeled with the metadata about the call,
including the HTTP method, parameters, and return
type. These diagrams are displayed in a dashboard
that could be expanded in the future to include views
of other concerns, as well as runtime analytics.

Limitations. There are currently several limita-
tions to our implementation to address. One limita-
tion is that it only searches for a single format of de-
fined HTTP endpoints and requests, in this case, those
defined by the functions included with the Spring
framework. Other formats can be substituted for other
frameworks with minimal refactoring, and a slightly
more extensive set of changes could define a different
target framework for each microservice while still re-
taining the same overall method. Another limitation
is that we currently only target systems using the Java
language. Again, other targets could be addressed as
long as an appropriate parser exists for the language;
however, unlike targeting a different framework, dif-
ferent languages would require non-trivial changes to
the underlying logic as the current approach depends
on Java’s annotations to identify entities and the de-
sired language may not share that feature.

4 CASE STUDY

To demonstrate the effectiveness of Prophet as a tool
for SAR, we ran it on the Train Ticket benchmark mi-
croservice system introduced in (Zhou et al., 2018).
The system consists of 41 microservices; of these,
36 microservices are Java-based, and they contain
27,259 lines of Java code, counted by the CLOC
(Count Lines of Code) tool. The benchmark was an-
alyzed using a MacBook Pro with a 2.9 GHz Quad-
Core Intel Core i7 processor and 16 GB of RAM.
Prophet took 2 minutes and 37 seconds on this de-
vice, to clone, analyze, and generate the graphs for
the repository. To manually analyze the project and
enumerate the entities and inter-service calls, it took
approximately 1.5 hours.

4.1 Results

For class entities, manual analysis of the source code
revealed 64 distinct entities in the project, and the
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 boolean status
 String message

GetAccountByIdResult

 UUID id
 String accountId
 String loginId
 String password
 int gender
 String name
 int documentType
 String documentNum
 String email

Account

 UUID id
 String tripId

TrainFood

 UUID id
 String stationId
 String storeName
 String telephone
 String businessTime
 double deliveryFee

FoodStore

 String foodName
 double price

Food

AllTripFood

 int seatNo
 String startStation
 String destStation

Ticket

 UUID accountId
 UUID previousOrderId
 String loginToken

OrderAlterInfo

 UUID id
 Date boughtDate
 Date travelDate
 Date travelTime
 UUID accountId
 String contactsName
 int documentType
 String contactsDocumentNumber
 String trainNumber
 int coachNumber
 int seatClass
 String seatNumber
 String from
 String to
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 String price
 String differenceMoney

Order

LeftTicketInfo

 boolean status
 String message

OrderTicketsResults

TransferTravelResult

 String startingStation
 String terminalStation
 Date startingTime
 Date endTime
 int economyClass
 int confortClass
 String trainTypeId
 String priceForEconomyClass
 String priceForConfortClass

TripResponse

 Type type
 String number

Tr ip Id

 boolean status
 String message

TripAl lDetai l

 String trainTypeId
 String routeId
 String startingStationId
 String stationsId
 String terminalStationId
 Date startingTime
 Date endTime
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 boolean status
 double percent
 String prices
 String message

TravelResult

 String startingPlace
 String endPlace
 Date departureTime
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 String id
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 int averageSpeed
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 String id
 String trip
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 String startStationId
 String terminalStationId
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Figure 1: The class diagram from manual analysis of the benchmark. Elements not found by Prophet circled in red.

combined relationships between those entities are
shown in Figure 1 (we included in the diagrams only
those entities that were involved in relationships due
to space constraints). This includes relationships that
are spread across several services but exclude rela-
tionships not syntactically defined by the code, e.g.,
a string that is the ID of another entity without any
further connection is not included. Prophet was able
to recover all of the entities, their properties, and their
relationships, with the exception of one property and
one relationship (highlighted with red circles in Fig-
ure 1). Prophet also reported five additional classes
that were not considered entities during the manual
inspection because they were being used as data trans-
fer objects (DTO) instead of entities.

For interservice communication, the manual anal-
ysis showed 153 connections between the services
and their endpoints; separate calls. A subset of these
connections are recreated in Figure 2 (due to space
constraints, the entire communication graph is not in-
cluded). Prophet successfully identified 135 of these,
missing 18 calls. The missing calls were all due to
those calls choosing from multiple potential URLs,
an ambiguity our tool was not designed to detect. All
other calls always used a single URL. The missing

edges in the Prophet result are highlighted with red
circles in the manual result (Figure 2).

4.2 Threats to Validity

To discuss the threats to the validity of our study, we
will mention the internal and external threats and the
measures taken to mitigate them.

Internal threats to validity. The primary internal
threat to our study’s validity is the possibility that the
manually reconstructed architecture is incomplete and
thus provides a faulty reference for our tool’s recon-
struction. To combat this, the manual reconstruction
was performed before the rest of the study was con-
ducted, and two developers separately performed a
manual analysis to ensure the results were complete.

External threats to validity. One external concern
is that the benchmark we tested on is not broadly ap-
plicable. To mitigate this, the microservice bench-
mark we chose was intended to be used as a basis
for microservice research and so was designed using
common microservice designs, ensuring that meth-
ods applied to it are generalizable to other systems.
Another threat is that the method itself will not gen-
eralize. Prophet is currently limited to discovering
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Figure 2: The communication diagram from manual analysis of the benchmark. Elements not found by Prophet circled in red.

entities defined using JPA or Lombok annotations,
as described above, and it only finds communica-
tion between services that use Spring Boot’s REST
client. However, this is only a limitation in imple-
mentation and not the underlying method. Differ-
ent implementations can target different frameworks
and HTTP clients simply by adjusting what pattern of
code is identified. This method is broadly applicable
to any microservice-based system that uses similarly-
named entities across its microservices, facilitates di-
rect communication between those services.

5 CONCLUSIONS

We have presented a method to analyze microser-
vice systems to generate their up-to-date data mod-
els and communication diagrams. This method pro-
vides several contributions. The analysis is fast and
re-run upon project change. It effectively serves as a
centralized source of documentation of decentralized
cloud-native systems. This makes it easier for devel-
opment teams to maintain reliable, up-to-date docu-
mentation of large, microservice projects even as it
evolves. As demonstrated in the case study, our ap-
proach can accurately extract this information with
relatively few errors. Finally, this approach can gain
a quick overview of the structure of a project for de-

velopers who are unfamiliar with it.
Future work on the Prophet tool includes research

on language agnosticism to enable other language in-
tegration. Prophet presents a basis for automated rea-
soning. Other system aspects, i.e., security, could be
targeted. We will also research novel visualization
methods since two-dimensional space becomes insuf-
ficient for microservices.

The code for the Prophet can be found at GitHub:
https://github.com/cloudhubs/prophet-utils. Besides,
we host a supportive web with real-time analysis at
https://cloudhubs.ecs.baylor.edu/prophet/
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