REFERENCES
Abbasi, S., yoob, T., Malik, A., and Memon, S. I. (2020).
Perceptions of students regarding e-learning during
covid-19 at a private medical college. Pakistan J. of
Med. Sci.
Agrawal, R. and Srikant, R. (1995). Mining sequential pat-
terns. In Yu, P. S. and Chen, A. L. P., editors, Proc.
11th Int. Conf. on Data Eng., Taipei. IEEE Comp. Soc.
Almaiah, M. A., Al-Khasawneh, A., and Althunibat, A.
(2020). Exploring the critical challenges and fac-
tors influencing the e-learning system usage during
COVID-19 pandemic. Educ. Inf. Technol.
Anjum, N. and Badugu, S. (2020). A study of different
techniques in EDM. In ICETE. Springer, online.
Boettcher, M. (2011). Contrast and change mining. Wiley
Int. Reviews: DM & KD, 1(3):215–230.
Chen, C. F., Yang, S.-H., Falsafi, B., and Moshovos, A.
(2004). Accurate and complexity-effective spatial pat-
tern prediction. In HPCA, Madrid. IEEE.
Chen, Y.-L., Chiang, M.-C., and Ko, M.-T. (2003).
Discovering time-interval sequential patterns in se-
quence databases. Expert Systems with Applications,
25(3):343–354.
Dermy, O. and Brun, A. (2020). Can we take advantage
of time-interval pattern mining to model students ac-
tivity? In Proc. 13th Int. Conf. on EDM, online. Int.
EDM Soc.
Dong, W., Fan, W., Shi, L., Zhou, C., and Yan, X. A gen-
eral framework to encode heterogeneous information
sources for contextual pattern mining. In Proc. ACM
Int. CIKM, Maui.
Ebner, M., Schön, S., Braun, C., Ebner, M., Grigoriadis, Y.,
Haas, M., Leitner, P., and Taraghi, B. (2020). Covid-
19 epidemic as e-learning boost? Future Internet,
12(6):94.
Favale, T., Soro, F., Trevisan, M., Drago, I., and Mellia, M.
(2020). Campus traffic and e-learning during covid-19
pandemic. Computer Networks.
Fournier-Viger, P., Lin, J. C.-W., Gomariz, A., Gueniche,
T., Soltani, A., Deng, Z., and Lam, H. (2016). The
spmf open-source data mining library version 2. In
Joint European conf. on ML and KD in DB. Springer.
Gao, C., Wang, J., He, Y., and Zhou, L. (2008). Efficient
mining of frequent sequence generators. In Huai, J.,
Chen, R., Hon, H., Liu, Y., Ma, W., Tomkins, A.,
and Zhang, X., editors, Proc. of the 17th Int. Conf.
on WWW. ACM.
Gutierrez-Santos, S., Mavrikis, M., and Magoulas, G.
(2010). Sequence detection for adaptive feedback
generation in an exploratory environment for mathe-
matical generalisation. In AIMSA, Varna. Springer.
Han, J., Kamber, M., and Pei, J. (2012). 7 - advanced pat-
tern mining. In Data Mining, The Morgan Kaufmann
Series in DMS. Boston, 3rd edition.
Ilieva, G., Yankova, T., Klisarova-Belcheva, S., and
Ivanova, S. (2021). Effects of covid-19 pandemic on
university students’ learning. Information.
Lau, E., Chai, K. K., Goteng, G. L., and Wijeratne, V.
(2021). A neural network modelling and prediction of
students’ progression in learning: A hybrid pedagogic
method. In CSEDU.
Magalhães, A. and Azevedo, P. J. (2015). Contrast set min-
ing in temporal databases. Expert systems.
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q.,
Dayal, U., and Hsu, M.-C. (2001). Prefixspan: Min-
ing SP efficiently by prefix-projected pattern growth.
In Proc. 17th Data Engineering, Heidelberg. IEEE.
Photopoulos, P., Stavrakas, I., and Triantis, D. (2021).
Post-covid-19 education: A case of technology driven
change? In CSEDU.
Poon, L. K., Kong, S.-C., Wong, M. Y., and Yau, T. S.
(2017). Mining sequential patterns of students’ access
on learning management system. In DM & big data,
Fukuoka. Springer.
Radha, R., Mahalakshmi, K., Kumar, V. S., and Sara-
vanakumar, A. (2020). E-learning during lockdown
of covid-19 pandemic: A global perspective. Int. jour.
of control & automation.
Reigal, R. E., Pastrana-Brincones, J. L., González-Ruiz,
S. L., Hernández-Mendo, A., Morillo-Baro, J. P., and
Morales-Sánchez, V. (2020). Use of data mining to
determine usage patterns of an online evaluation plat-
form during the covid-19 pandemic. Front. in Psycho.
Wang, J.-D. (2011). A novel approach to compute pattern
history for trend analysis. In 8th Int. FSKD, Shanghai.
IEEE.
Wang, R., Ji, W., Liu, M., Wang, X., Weng, J., Deng, S.,
Gao, S., and Yuan, C. (2018). Review on mining data
from multiple data sources. Pattern Reco. Letters.
CSEDU 2022 - 14th International Conference on Computer Supported Education
170