Int. Conf. on Machine Learning, ICML 2018, vol-
ume 80 of Proc. of Machine Learning Research, pages
1856–1865. PMLR.
Horni, A., Nagel, K., and Axhausen, K. (2016). The
Multi-Agent Transport Simulation, volume 1. Ubiq-
uity Press.
Innes, J. and Kouhy, R. (2011). The Activity-Based Ap-
proach, pages 243–274. Palgrave Macmillan UK.
Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker-
Walz, L. (2012). Recent development and applications
of SUMO - Simulation of Urban MObility. Interna-
tional Journal On Advances in Systems and Measure-
ments, 3 and 4.
Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gold-
berg, K., Gonzalez, J., Jordan, M. I., and Stoica, I.
(2018). RLlib: Abstractions for distributed reinforce-
ment learning. In 35th Int. Conf. on Machine Learn-
ing, ICML 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 3059–3068. PMLR.
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2016). Contin-
uous control with deep reinforcement learning. In 4th
Int. Conference on Learning Representations, ICLR
2016 posters.
Lin, Y., Dai, X., Li, L., and Wang, F.-Y. (2018). An ef-
ficient deep reinforcement learning model for urban
traffic control. arXiv 1808.01876.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforce-
ment learning. In 33rd Int. Conf. Machine Learning,
ICML 2016, volume 48 of JMLR Workshop and Con-
ference Proceedings, pages 1928–1937. JMLR.org.
Ort
´
uzar, J. d. D. and Willumsen, L. (2011). Modelling
Transport, 4th Ed. Wiley.
OSRM (2020). Routing machine project OSRM. http://
project-osrm.org.
Project SUMBA (2020). Guidance for transport modelling
and data collection. https://www.eltis.org/resources/
tools/guidance-transport-modelling-and-transport-
data-collection-intermodality.
S. Sutton, R. and G. Barto, A. (2018). Reinforcement Learn-
ing: An Introduction 2nd Ed. MIT Press.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. arXiv 1707.06347.
TensorBoard (2021). https://www.tensorflow.org/
tensorboard.
Terry, J. K., Black, B., Grammel, N., Jayakumar, M., Hari,
A., Sulivan, R., Santos, L., Perez, R., Horsch, C.,
Dieffendahl, C., Williams, N. L., Lokesh, Y., Sulli-
van, R., and Ravi, P. (2020a). PettingZoo: Gym for
multi-agent reinforcement learning. arXiv preprint
arXiv:2009.14471.
Terry, J. K., Black, B., and Hari, A. (2020b). Supersuit:
Simple microwrappers for reinforcement learning en-
vironments. arXiv preprint arXiv:2008.08932.
Terry, J. K., Grammel, N., Black, B., Hari, A., Horsch,
C., and Santos, L. (2021). Agent environment cycle
games.
Tom
´
asek, P., Hor
´
ak, K., Aradhye, A., Bosansk
´
y, B., and
Chatterjee, K. (2021). Solving partially observable
stochastic shortest-path games. In 30th Int. Joint Conf.
on Artificial Intelligence, IJCAI 2021, pages 4182–
4189. ijcai.org.
Walraven, E., Spaan, M. T., and Bakker, B. (2016). Traf-
fic flow optimization: A reinforcement learning ap-
proach. Engineering Applications of Artificial Intelli-
gence, 52:203–212.
Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot,
M., and de Freitas, N. (2016). Dueling network ar-
chitectures for deep reinforcement learning. In 33rd
Int. Conf. on Machine Learning, ICML 2016, vol-
ume 48 of JMLR Workshop and Conference Proceed-
ings, pages 1995–2003. JMLR.org.
Wiering, M., Vreeken, J., Veenen, J., and Koopman, A.
(2004). Simulation and optimization of traffic in a
city. In IEEE Intelligent Vehicles Symposium, pages
453 – 458. IEEE.
Wu, T., Zhou, P., Liu, K., Yuan, Y., Wang, X., Huang, H.,
and Wu, D. O. (2020). Multi-agent deep reinforce-
ment learning for urban traffic light control in vehic-
ular networks. IEEE Transactions on Vehicular Tech-
nology, 69(8):8243–8256.
Zheng, G., Xiong, Y., Zang, X., Feng, J., Wei, H., Zhang,
H., Li, Y., Xu, K., and Li, Z. (2019). Learning phase
competition for traffic signal control. In 28th ACM Int.
Conf. on Information and Knowledge Management,
CIKM 2019, pages 1963–1972. ACM.
Traffic Light Control using Reinforcement Learning: A Survey and an Open Source Implementation
79