National Center for Biotechnology Information. (2005).
STRESS AND HEALTH: Psychological, Behavioral,
and Biological Determinants. https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC2568977/
Nishikawa, T., Hashimoto, Y., Minami, K., Watanuki, K.,
Kaede, K., & Muramatsu, K. (2019). Examination of
the brain areas related to cognitive performance during
the stroop task using deep neural network. In Advances
in Intelligent Systems and Computing (Vol. 774).
Springer International Publishing.
https://doi.org/10.1007/978-3-319-94944-4_11
Omg. (2008). Software & Systems Process Engineering
Meta-Model Specification V2.0. April, 236.
http://www.omg.org/spec/SPEM/2.0/PDF
Orrù, G., Monaro, M., Conversano, C., Gemignani, A., &
Sartori, G. (2020). Machine learning in psychometrics
and psychological research. Frontiers in Psychology,
10(January), 1–10. https://doi.org/10.3389/fpsyg.20
19.02970
Prado, D., Cedillo, P., & Cordova, F. (2021). Improving
Cognitive Functions in Older People: Stroop Task
Solution. Advances in Intelligent Systems and
Computing. https://doi.org/https://doi.org/10.1007/9
78-3-030-73103-8_64
Rincón, J. (2019). Relación de respuestas psicosomáticas y
emocionales con los niveles de estrés laboral en
funcionarios públicos: Un estudio transversal en el
Instituto Colombiano de Bienestar Familiar Regional
Antioquia en el año 2019. Universidad de San
Buenaventura Colombia, 2–39.
Ruiz-Rube, I., Dodero, J. M., Palomo-Duarte, M., Ruiz, M.,
& Gawn, D. (2013). Uses and applications of Software
& Systems Process Engineering Meta-Model process
models. A systematic mapping study. Journal of
Software: Evolution and Process, 25(9), 999–1025.
https://doi.org/https://doi.org/10.1002/smr.1594
Scarpina, F., & Tagini, S. (2017). The stroop color and
word test. Frontiers in Psychology, 8(APR), 1–8.
https://doi.org/10.3389/fpsyg.2017.00557
Seid, S., & Pooja. (2019). Road accident data analysis: Data
preprocessing for better model building. Journal of
Computational and Theoretical Nanoscience, 16(9),
4019–4027. https://doi.org/10.1166/jctn.2019.8288
Seo, W., Kim, N., Kim, S., Lee, C., & Park, S. M. (2019).
Deep ECG-respiration network (DeepER net) for
recognizing mental stress. Sensors (Switzerland),
19(13), 1–16. https://doi.org/10.3390/s19133021
Shatte, A. B. R., Hutchinson, D. M., & Teague, S. J. (2019).
Machine learning in mental health: A scoping review of
methods and applications. Psychological Medicine,
49(9), 1426–1448. https://doi.org/10.1017/S003329171
9000151
Srividya, M., Mohanavalli, S., & Bhalaji, N. (2018).
Behavioral Modeling for Mental Health using Machine
Learning Algorithms. Journal of Medical Systems,
42(5). https://doi.org/10.1007/s10916-018-0934-5
Stroop, J. R. (1935). Studies of interference in serial verbal
reactions. Journal of Experimental Psychology, 18(6),
643–662. https://doi.org/10.1037/h0054651
Szabo, S., Tache, Y., & Somogyi, A. (2012). The legacy of
Hans Selye and the origins of stress research: A
retrospective 75 years after his landmark brief “letter”
to the Editor# of Nature. Stress, 15(5), 472–478.
https://doi.org/10.3109/10253890.2012.710919
Tulen, J. H. M., Moleman, P., van Steenis, H. G., &
Boomsma, F. (1989). Characterization of stress
reactions to the Stroop Color Word Test.
Pharmacology, Biochemistry and Behavior, 32(1), 9–
15. https://doi.org/10.1016/0091-3057(89)90204-9
van Maanen, L., van Rijn, H., & Borst, J. P. (2009). Stroop
and picture-word interference are two sides of the same
coin. Psychonomic Bulletin and Review, 16(6), 987–
999. https://doi.org/10.3758/PBR.16.6.987
Wu, D., Courtney, C. G., Lance, B. J., Narayanan, S. S.,
Dawson, M. E., Oie, K. S., & Parsons, T. D. (2010).
Optimal arousal identification and classification for
affective computing using physiological signals:
Virtual reality stroop task. IEEE Transactions on
Affective Computing, 1(2), 109–118.
https://doi.org/10.1109/T-AFFC.2010.12
Xu, Q., Nwe, T. L., & Guan, C. (2015). Cluster-Based
Analysis for Personalized Stress. Ieee Journal of
Biomedical and Health Informatics, 19(1), 275–281.
Yarkoni, T., & Westfall, J. (2017). Choosing Prediction
Over Explanation in Psychology: Lessons From
Machine Learning. Perspectives on Psychological
Science, 12(6), 1100–1122. https://doi.org/10.1177/
1745691617693393
Yuan, C., & Yang, H. (2019). Research on K-Value
Selection Method of K-Means Clustering Algorithm. J,
2(2), 226–235. https://doi.org/10.3390/j2020016