engineering domain. Journal of systems and software,
80(4):571–583.
Casilari, E., Santoyo-Ram
´
on, J. A., and Cano-Garc
´
ıa, J. M.
(2017). Umafall: A multisensor dataset for the re-
search on automatic fall detection. Procedia Com-
puter Science, 110:32–39.
Chereshnev, R. and Kert
´
esz-Farkas, A. (2017). Hugadb:
Human gait database for activity recognition from
wearable inertial sensor networks. In International
Conference on Analysis of Images, Social Networks
and Texts, pages 131–141. Springer.
Cohoon, T. J. and Bhavnani, S. P. (2020). Toward precision
health: applying artificial intelligence analytics to dig-
ital health biometric datasets. Personalized Medicine,
17(4):307–316.
Elsaleh, T., Enshaeifar, S., Rezvani, R., Acton, S. T.,
Janeiko, V., and Bermudez-Edo, M. (2020). Iot-
stream: A lightweight ontology for internet of things
data streams and its use with data analytics and event
detection services. Sensors, 20(4):953.
Garousi, V., Felderer, M., and M
¨
antyl
¨
a, M. V. (2019).
Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineer-
ing. Information and Software Technology, 106:101–
121.
Igual, R., Medrano, C., and Plaza, I. (2015). A comparison
of public datasets for acceleration-based fall detection.
Medical engineering & physics, 37(9):870–878.
Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., and
Kwak, K.-S. (2015). The internet of things for health
care: a comprehensive survey. IEEE Access, 3:678–
708.
Junior, E. C., Andrade, R. M., Rocha, L. S., Taramasco, C.,
and Ferreira, L. (2021). Computational solutions for
human falls classification. IEEE Access.
Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M.,
Bailey, J., and Linkman, S. (2009). Systematic litera-
ture reviews in software engineering–a systematic lit-
erature review. Information and software technology,
51(1):7–15.
Linhares, I., Andrade, R., Costa Junior, E., Oliveira, P. A.,
Oliveira, B., and Aguilar, P. (2020). Lessons learned
from the development of mobile applications for fall
detection. In GLOBAL HEALTH 2020, pages 18–25.
Malik, N. and Malik, S. K. (2020). Using iot and semantic
web technologies for healthcare and medical sector.
Ontology-Based Information Retrieval for Healthcare
Systems, pages 91–115.
Mesk
´
o, B. (2014). The guide to the future of medicine: tech-
nology and the human touch. Webicina kft.
Miloslavskaya, N. and Tolstoy, A. (2016). Big data, fast
data and data lake concepts. Procedia Computer Sci-
ence, 88:300–305.
Mohammed, S. and Fiaidhi, J. (2021). The road map
of building e-diagnostics services using neo4j graph
connectivity and analytics for the internet of health-
care things (ioht). International Information Institute
(Tokyo), 24(2):93–106.
Moody, G. B. and Mark, R. G. (2001). The impact of the
mit-bih arrhythmia database. IEEE Engineering in
Medicine and Biology Magazine, 20(3):45–50.
Moriguchi, M., Maeshige, N., Ueno, M., Yoshikawa, Y.,
Terashi, H., and Fujino, H. (2018). Modulation of
plantar pressure and gastrocnemius activity during
gait using electrical stimulation of the tibialis anterior
in healthy adults. Plos one, 13(5):e0195309.
Oliveira, P. A. M., Andrade, R. M. C., Neto, P. S. N., and
Oliveira, B. S. (2022). Internet of health things for
quality of life: Open challenges based on a systematic
literature mapping. In 15th International Conference
on Health Informatics (HEALTHINF). INSTICC.
Pai, M., McCulloch, M., Gorman, J. D., Pai, N., Enanoria,
W., Kennedy, G., Tharyan, P., and Colford Jr, J. M.
(2004). Systematic reviews and meta-analyses: an il-
lustrated, step-by-step guide. The National medical
journal of India, 17(2):86–95.
Qiu, S., Wang, Z., Zhao, H., Liu, L., Li, J., Jiang, Y., and
Fortino, G. (2018). Body sensor network based robust
gait analysis: Toward clinical and at home use. IEEE
Sensors Journal.
Rodrigues, J. J., Segundo, D. B. D. R., Junqueira, H. A.,
Sabino, M. H., Prince, R. M., Al-Muhtadi, J., and
De Albuquerque, V. H. C. (2018). Enabling technolo-
gies for the internet of health things. IEEE Access,
6:13129–13141.
Saha, S. S., Rahman, S., Rasna, M. J., Zahid, T. B., Islam,
A. M., and Ahad, M. A. R. (2018). Feature extraction,
performance analysis and system design using the du
mobility dataset. IEEE Access, 6:44776–44786.
Sandhu, R. S. and Samarati, P. (1994). Access control: prin-
ciple and practice. IEEE communications magazine,
32(9):40–48.
Santoyo-Ram
´
on, J. A., Casilari, E., and Cano-Garc
´
ıa, J. M.
(2018). Analysis of a smartphone-based architecture
with multiple mobility sensors for fall detection with
supervised learning. Sensors, 18(4):1155.
Selvaraj, S. and Sundaravaradhan, S. (2020). Challenges
and opportunities in iot healthcare systems: a system-
atic review. SN Applied Sciences, 2(1):139.
Shuja, J., Alanazi, E., Alasmary, W., and Alashaikh, A.
(2021). Covid-19 open source data sets: a comprehen-
sive survey. Applied Intelligence, 51(3):1296–1325.
Strodthoff, N. and Strodthoff, C. (2019). Detecting and in-
terpreting myocardial infarction using fully convolu-
tional neural networks. Physiological measurement,
40(1):015001.
Sun, F., Zang, W., Gravina, R., Fortino, G., and Li, Y.
(2020). Gait-based identification for elderly users
in wearable healthcare systems. Information Fusion,
53:134–144.
Venceslau, A., Andrade, R., Vidal, V., Nogueira, T., and
Pequeno, V. (2019). Iot semantic interoperability: a
systematic mapping study. In ICEIS, pages 535–544.
Weiser, M. (1999). The computer for the 21st century. ACM
SIGMOBILE mobile computing and communications
review, 3(3):3–11.
Wohlin, C. (2014). Guidelines for snowballing in system-
atic literature studies and a replication in software en-
gineering. In Proceedings of the 18th international
conference on evaluation and assessment in software
engineering, page 38. ACM.
Where Is the Internet of Health Things Data?
49