Feng, Y., Hourdos, J., and Davis, G. (2014). Probe vehicle
based real-time traffic monitoring on urban roadways.
Transp. Res. Part C: Emerging Tech., 40:160–178.
Gall, A. and Hall, F. (1989). Distinguishing between inci-
dent congestion and recurrent congestion: a proposed
logic. Transp. Res. Rec., (1232).
Gokulan, B. and Srinivasan, D. (2010). Distributed geomet-
ric fuzzy multiagent urban traffic signal control. IEEE
Trans. on Int. Transportation Sys., 11(3):714–727.
Helbing, D., L
¨
ammer, S., and Lebacque, J. (2005). Self-
organized control of irregular or perturbed network
traffic. Optimal control and dynamic games, pages
239–274.
Jenelius, E. and Koutsopoulos, H. (2013). Travel time esti-
mation for urban road networks using low frequency
probe vehicle data. Transp. Res. Part B: Methodolog-
ical, 53:64–81.
Kamijo, S., Harada, M., and Sakauchi, M. (2004). An in-
cident detection system based on semantic hierarchy.
In Proc. of 7th Int. Conf. on Int. Trans. Sys. (ITS’04),
pages 853–858. IEEE.
Lin, W. and Daganzo, C. (1997). A simple detection scheme
for delay-inducing freeway incidents. Transp. Res.
Part A: Policy and Practice, 31(2):141–155.
Mauro, V. and Taranto, C. D. (1990). Utopia. Control,
computers, communications in transportation.
M
¨
uller-Schloer, C. and Tomforde, S. (2017). Organic
Computing-Technical Systems for Survival in the Real
World. Springer.
Oliveira, L. D. and Camponogara, E. (2010). Multi-agent
model predictive control of signaling split in urban
traffic networks. Transp. Res. Part C: Emerging Tech.,
18(1):120–139.
Payne, H. and Tignor, S. (1978). Freeway incident-
detection algorithms based on decision trees with
states. Transp. Res. Rec., (682).
Payne, H. J. (1975). Freeway incident detection based upon
pattern classification. In Proc. of IEEE Conf. on Deci-
sion and Control, volume 14, pages 688–692. IEEE.
Prothmann, H., Branke, J., Schmeck, H., Tomforde, S.,
Rochner, F., H
¨
ahner, J., and M
¨
uller-Schloer, C.
(2009). Organic traffic light control for urban road net-
works. Int. J. Auton. Adapt. Commun. Syst., 2(3):203–
225.
Prothmann, H., Tomforde, S., Lyda, J., Branke, J., H
¨
ahner,
J., M
¨
uller-Schloer, C., and Schmeck, H. (2012).
Self-organised routing for road networks. In Self-
Organizing Systems - 6th IFIP TC 6 International
Workshop, IWSOS 2012, Delft, The Netherlands,
March 15-16, 2012. Proceedings, pages 48–59.
Robertson, D. and Bretherton, D. (1991). Optimizing net-
works of traffic signals in real time – the SCOOT
method. IEEE Trans. on Veh. Tech., 40(1):11–15.
Schrank, D., Albert, L., Eisele, B., and Lomax, T. (2021).
2021 URBAN MOBILITY REPORT.
Schrank, D., Eisele, B., and Lomax, T. (2019). 2019 UR-
BAN MOBILITY REPORT.
Shehata, M., Cai, J., Badawy, W., Johannesson, R., and
Radmanesh, A. (2008). Video-based automatic inci-
dent detection for smart roads: The outdoor environ-
mental challenges regarding false alarms. IEEE Trans.
on Int. Transp. Sys., 9(2):349–360.
Sims, A. and Dobinson, K. (1980). The Sydney coordinated
adaptive traffic (SCAT) system – Philosophy and ben-
efits. IEEE Trans. on Veh. Tech., 29(2):130–137.
Sommer, M., Tomforde, S., and H
¨
ahner, J. (2013). Using
a neural network for forecasting in an organic traf-
fic control management system. In 2013 Workshop
on Embedded Self-Organizing Systems, ESOS’13, San
Jose, CA, USA, June 25, 2013.
Sommer, M., Tomforde, S., and H
¨
ahner, J. (2016). Forecast-
augmented route guidance in urban traffic networks
based on infrastructure observations. In Proceedings
of the International Conference on Vehicle Technol-
ogy and Intelligent Transport Systems, VEHITS 2016,
Rome, Italy, April 23-24, 2016, pages 177–186.
Stephanedes, Y. and Chassiakos, A. (1993). Freeway inci-
dent detection through filtering. Transp. Res. Part C:
Emerging Technologies, 1(3):219–233.
Studer, L., Ketabdari, M., and Marchionni, G. (2015). Anal-
ysis of adaptive traffic control systems design of a de-
cision support system for better choices. J Civil Envi-
ron Eng, 5(195):2.
Takaba, S. and Matsuno, H. (1985). Traffic incident detec-
tion using correlation analysis. In SCS 1985 Summer
Comp. Sim. Conf., pages 529–534.
Thomsen, I., Zapfe, Y., and Tomforde, S. (2021). Urban
traffic incident detection for organic traffic control: A
density-based clustering approach. In Proceedings of
the 7th International Conference on Vehicle Technol-
ogy and Intelligent Transport Systems, VEHITS 2021,
Online Streaming, April 28-30, 2021, pages 152–160.
Tomforde, S., Prothmann, H., Branke, J., H
¨
ahner, J., Mnif,
M., M
¨
uller-Schloer, C., Richter, U., and Schmeck, H.
(2011). Observation and control of organic systems.
In Organic Computing—A Paradigm Shift for Com-
plex Systems, pages 325–338. Springer.
Tomforde, S., Prothmann, H., Rochner, F., Branke, J.,
H
¨
ahner, J., M
¨
uller-Schloer, C., and Schmeck, H.
(2008). Decentralised progressive signal systems
for organic traffic control. In 2008 Second IEEE
International Conference on Self-Adaptive and Self-
Organizing Systems, pages 413–422. IEEE.
Vincent, R., Peirce, J., and Webb, P. (1990). Mova traffic
control manual. MOVA reports.
Webster, F. (1959). Traffic Signal Settings - Technical Paper
No 39. Road Research Laboratory, London, UK.
Willsky, A., Chow, E., Gershwin, S., Greene, C., Houpt,
P., and Kurkjian, A. (1980). Dynamic model-based
techniques for the detection of incidents on freeways.
IEEE Transa. on Automatic Control, 25(3):347–360.
Wilson, S. W. (1995). Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175.
A Concept for Collaborative Incident Validation in a Self-organised Traffic Management System
323