to determine the final 3D bounding box of an object,
it is difficult to immediately update the 3D bounding
box corresponding to the object's size change.
Another limitation is that the system does not detect
stairs; therefore, it cannot work for floor transition.
In the future, we will be working on the discussed
area of improvement and solve the app's limitations.
Also, we would like to integrate this system with our
previous work (Zhu et al., 2020) in indoor navigation
apps and test with BLV users.
ACKNOWLEDGEMENTS
The research is supported by NSF (Awards
#2131186, #2118006, #1827505, and #1737533),
AFOSR (#FA9550-21-1-0082) and Intelligence
Community Center for Academic Excellence (IC
CAE) at Rutgers (#HHM402-19-1-0003 and
#HHM402-18-1-0007).
REFERENCES
Bourne, R. R., Adelson, J., Flaxman, S., Briant, P., Bottone,
M., Vos, T., ... & Taylor, H. R. (2020). Global Prevalence
of Blindness and Distance and Near Vision Impairment
in 2020: progress towards the Vision 2020 targets and
what the future holds. Investigative Ophthalmology &
Vis. Sci., 61(7),2317-2317.
Ackland, P., Resnikoff, S., & Bourne, R. (2017). World
blindness and visual impairment: despite many
successes, the problem is growing. Community eye
health, 30(100), 71.
Manduchi, R., & Kurniawan, S. (2010). Watch your head,
mind your step: mobility-related accidents experienced
by people with visual impairment. Dept. Comp. Eng.,
Univ. California, Santa Cruz, Tech. Rep.
Huang, H. C., Hsieh, C. T., & Yeh, C. H. (2015). An indoor
obstacle detection system using depth information and
region growth. Sensors, 15(10), 27116-27141.
Soquet, N., Aubert, D., & Hautiere, N. (2007). Road
segmentation supervised by an extended v-disparity
algorithm for autonomous navigation. In 2007 IEEE
Intell. Veh. Symp., pp. 160-165. IEEE.
Cheng, R., Wang, K., Yang, K., & Zhao, X. (2015). A ground
and obstacle detection algorithm for the visually
impaired. In 2015 IET ICBISP, pp. 1-6.
Sun, L., Yang, K., Hu, X., Hu, W., & Wang, K. (2020). Real-
time fusion network for rgb-d semantic segmentation
incorporating unexpected obstacle detection for road-
driving images. IEEE Robot. and Autom. Lett., 5(4),
5558-5565.
Chen, Y., Liu, S., Shen, X., & Jia, J. (2020). Dsgn: Deep
stereo geometry network for 3d object detection. In Proc.
IEEE CVPR, pp. 12536-12545.
Pham, H. H., Le, T. L., & Vuillerme, N. (2016). Real-time
obstacle detection system in indoor environment for the
visually impaired using microsoft kinect sensor. J. of
Sensors, 2016.
Apple Inc. Arkit - augmented reality. Apple Developer.
https://developer.apple.com/augmented-reality/arkit/
Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
He, C., Gong, J., Yang, Y., Bi, D., Lan, J., & Qie, L. (2021,
May). Real-time Track Obstacle Detection from 3D
LIDAR Point Cloud. In J. of Phys.: Conf. Ser., 1910(1),
p. 012002. IOP Publishing.
Garnett, N., Silberstein, S., Oron, S., Fetaya, E., Verner, U.,
Ayash, A., Goldner, V., Cohen, R., Horn, K., & Levi, D.
(2017). Real-time category-based and general obstacle
detection for autonomous driving. In Proc. IEEE
ICCVW, pp. 198-205.
Fischler, M. A., & Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Commun.
of the ACM, 24(6), 381-395.
Levi, D., Garnett, N., Fetaya, E., & Herzlyia, I. (2015,
September). StixelNet: A Deep Convolutional Network
for Obstacle Detection and Road Segmentation. In
BMVC, 1(2), p. 4.
Rothe, R., Guillaumin, M., & Van Gool, L. (2014,
November). Non-maximum suppression for object
detection by passing messages between windows. In
ACCV, pp. 290-306. Springer, Cham.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox
detector. In ECCV, pp. 21-37. Springer, Cham.
Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P.
(2017). Focal loss for dense object detection. In Proc.
IEEE ICCV, pp. 2980-2988.
Girshick, R. (2015). Fast r-cnn. In Proc. IEEE ICCV, pp.
1440-1448.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask
r-cnn. In Proc. IEEE ICCV
, pp. 2961-2969.
Soviany, P., & Ionescu, R. T. (2018, September). Optimizing
the trade-off between single-stage and two-stage deep
object detectors using image difficulty prediction. In
2018 SYNASC, pp. 209-214. IEEE.
Karunasekera, H., Wang, H., & Zhang, H. (2019). Multiple
object tracking with attention to appearance, structure,
motion and size. IEEE Access, 7, 104423-104434.
Sualeh, M., & Kim, G. W. (2020). Visual-LiDAR Based 3D
Object Detection and Tracking for Embedded Systems.
IEEE Access, 8, 156285-156298.
Rezatofighi, S. H., Milan, A., Zhang, Z., Shi, Q., Dick, A., &
Reid, I. (2015). Joint probabilistic data association
revisited. In Proc. IEEE ICCV, pp. 3047-3055.
Wang, M., & Wu, X. (2021). Multi-Object Tracking Strategy
of Autonomous Vehicle Using Modified Unscented
Kalman Filter and Reference Point Switching. J. of
Shanghai Jiaotong Univ. (Science), 26(5), 607-614.
Zhu, Z., Chen, J., Zhang, L., Chang, Y., Franklin, T., Tang,
H., & Ruci, A. (2020). iASSIST: An iPhone-Based
Multimedia Information System for Indoor Assistive
Navigation. In IJMDEM, 11(4), 38-59.
Marques, O. (2020). Computer Vision and Image Analysis
with the Vision Framework. In Image Process. and
Comp. Vision in iOS, pp. 41-50. Springer, Cham.