high-fidelity simulators. In 2019 International Con-
ference on Robotics and Automation (ICRA), pages
8271–8277. IEEE.
Allen, B. L., Shin, B. T., and Cooper, P. J. (1978). Analysis
of traffic conflicts and collisions. Technical report.
ASAM OSI (2021). ASAM OSI
R
(Open Simulation Inter-
face). Accessed: Dec. 15, 2021.
Bach, J., Otten, S., and Sax, E. (2016). Model based sce-
nario specification for development and test of auto-
mated driving functions. In 2016 IEEE Intelligent Ve-
hicles Symposium (IV), pages 1149–1155. IEEE.
Baumann, D., Pfeffer, R., and Sax, E. (2021). Auto-
matic generation of critical test cases for the devel-
opment of highly automated driving functions. In
2021 IEEE 93rd Vehicular Technology Conference
(VTC2021-Spring), pages 1–5. IEEE.
Bussler, A., Hartjen, L., Philipp, R., and Schuldt, F. (2020).
Application of evolutionary algorithms and critical-
ity metrics for the verification and validation of auto-
mated driving systems at urban intersections. In 2020
IEEE Intelligent Vehicles Symposium (IV), pages 128–
135. IEEE.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. (2017). CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Confer-
ence on Robot Learning, pages 1–16.
dSPACE (2021). SIMPHERA - Web-based solution for
simulation and validation in autonomous driving de-
velopment. Accessed: Jan. 19, 2022.
Gartner (2021). Top strategic technology trends
for 2022. https://www.gartner.com/en/information-
technology/insights/top-technology-trends. Accessed:
2021-10-25.
Greenhill, S., Rana, S., Gupta, S., Vellanki, P., and
Venkatesh, S. (2020). Bayesian optimization for adap-
tive experimental design: A review. IEEE Access,
8:13937–13948.
Hayward, J. C. (1972). Near miss determination through
use of a scale of danger. In Unknown. Publisher:
Pennsylvania State University University Park.
IPG Automotive GmbH (2021). CarMaker. Accessed: Dec.
20, 2021.
King, C., Braun, T., Braess, C., Langner, J., and Sax, E.
(2021). Capturing the variety of urban logical sce-
narios from bird-view trajectories. In VEHITS, pages
471–480.
Linnhoff, C., Rosenberger, P., and Winner, H. (2021). Re-
fining object-based lidar sensor modeling — challeng-
ing ray tracing as the magic bullet. IEEE Sensors Jour-
nal, 21(21):24238–24245.
Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J.,
Fl
¨
otter
¨
od, Y.-P., Hilbrich, R., L
¨
ucken, L., Rummel, J.,
Wagner, P., and Wießner, E. (2018). Microscopic traf-
fic simulation using sumo. In The 21st IEEE Interna-
tional Conference on Intelligent Transportation Sys-
tems. IEEE.
Menzel, T., Bagschik, G., and Maurer, M. (2018). Scenarios
for development, test and validation of automated ve-
hicles. In 2018 IEEE Intelligent Vehicles Symp. (IV),
pages 1821–1827. IEEE.
Otten, S., Bach, J., Wohlfahrt, C., King, C., Lier, J., Schmid,
H., Schmerler, S., and Sax, E. (2018). Automated
assessment and evaluation of digital test drives. In
Advanced Microsystems for Automotive Applications
2017, pages 189–199. Springer.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009). Ros: an
open-source robot operating system. In ICRA work-
shop on open source software, volume 3, page 5.
Kobe, Japan.
Sch
¨
onemann, V., Winner, H., Glock, T., Otten, S., Sax, E.,
Boeddeker, B., Verhaeg, G., Tronci, F., and Padilla,
G. G. (2018). Scenario-based functional safety for
automated driving on the example of valet parking.
In Future of Information and Communication Confer-
ence, pages 53–64. Springer.
Sch
¨
utt, B., Steimle, M., Kramer, B., Behnecke, D., and
Sax, E. (2021). A taxonomy for quality in simulation-
based development and testing of automated driving
systems. arXiv preprint arXiv:2102.06588.
Steimle, M., Menzel, T., and Maurer, M. (2021). To-
wards a consistent terminology for scenario-based de-
velopment and test approaches for automated vehi-
cles: A proposal for a structuring framework, a ba-
sic vocabulary, and its application. arXiv preprint
arXiv:2104.09097.
Treiber, M., Hennecke, A., and Helbing, D. (2000). Con-
gested traffic states in empirical observations and mi-
croscopic simulations. Phys. Rev. E, 62:1805–1824.
Ueno, T., Rhone, T. D., Hou, Z., Mizoguchi, T., and Tsuda,
K. (2016). Combo: an efficient bayesian optimiza-
tion library for materials science. Materials discovery,
4:18–21.
Wachenfeld, W., Junietz, P., Wenzel, R., and Winner, H.
(2016). The worst-time-to-collision metric for situa-
tion identification. In 2016 IEEE Intelligent Vehicles
Symposium (IV), pages 729–734. IEEE.
Zofka, M. R., Kuhnt, F., Kohlhaas, R., Rist, C., Schamm, T.,
and Z
¨
ollner, J. M. (2015). Data-driven simulation and
parametrization of traffic scenarios for the develop-
ment of advanced driver assistance systems. In 2015
18th International Conference on Information Fusion
(Fusion), pages 1422–1428. IEEE.
Zofka, M. R., Kuhnt, F., Kohlhaas, R., and Z
¨
ollner, J. M.
(2016). Simulation framework for the development of
autonomous small scale vehicles. In 2016 IEEE In-
ternational Conference on Simulation, Modeling, and
Programming for Autonomous Robots, SIMPAR 2016,
San Francisco, CA, USA, December 13-16, 2016,
pages 318–324.
An Application of Scenario Exploration to Find New Scenarios for the Development and Testing of Automated Driving Systems in Urban
Scenarios
345