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Abstract: In this work, we introduce a novel pipeline that enables the generation of multiple-choice questions and exer-
cises from as little as a topic keyword. Hence, providing users the possibility to start with a study objective in
mind and then automatically generate personalized learning material. The main contributions of this project
are a scraper that can extract relevant information from websites, a novel distractor generation method that can
make use of context and a technique to automatically combine text and questions into interactive exercises.
Our novel distractor generation method was tested in a human survey which showed that the distractor gen-
eration quality is comparable to hand crafted distractors. The pipeline is built into a web application that lets
users refine the results for each step, openly accessible at https://adaptive-teaching.com.

1 INTRODUCTION

With the rapid pace of discoveries and the large di-
versity of topics, it is not always possible to find up-
to-date learning material that is adapted to students’
existing knowledge and interest. Sometimes such ma-
terial might not have even been created yet, as the sub-
ject is too recent or too specific. As a result, a large
number of man-hours is put into organizing new in-
formation into courses. This high workload is a major
bottleneck when it comes to personalized teaching or
to the wide adoption of automated teaching assistants
in the future of education.

In this work, we present a framework that tries to
address this bottleneck by allowing a user to generate
questions and exercises from as little as a topic de-
scription. For this purpose, we deploy several recently
proposed models for natural language processing and
develop an ensemble of methods to generate mislead-
ing answers for multiple-choice questions. We will
refer to these misleading answer options as distrac-
tors. We streamlined the developed tool into an ap-
plication that is easy to use and publicly available at
https://adaptive-teaching.com.

This application provides a user with the possibil-
ity to start with a study goal in mind, and then auto-
matically generate personalized learning material to
achieve it. To ensure good quality, the user is free to
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refine the process at any stage of the pipeline. This
includes control over the exact information sources
used, the questions to ask, and finally the existence of
hints in the form of multiple-choice answer options.
The resulting questions are free to be exported as ex-
ams, flashcards, or as exercises that can be studied
without prior knowledge about the topic. To summa-
rize, our contributions include:

• A web scraper to search and extract relevant text.

• A model for context based distractor generation.

• A topic-agnostic, automatic course generation.

2 RELATED WORK

Automating various aspects of course material gen-
eration has been a long-standing interest of the re-
search community, going from discovering student’s
interests and abilities (Guetl, 2008) to the dynamic
assembling of courseware (Sathiyamurthy et al.,
2012). Our work differs from many previous pro-
posals in that we eliminate the necessity for an or-
ganized knowledge base. As a matter of fact, most
previous approaches to adaptive course generation de-
pend on structuring the various concepts and learn-
ing materials into a database and developing an intri-
cate combination system that generates new course-
ware by reassembling these concepts, see e.g. (del
Carmen Rodrı́guez-Hernández et al., 2020). One of
the early works in this field (Vassileva, 1992) intro-
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duced an architecture that allowed authors of con-
tent to store teaching materials in a database. That
material can then be assembled dynamically to form
courses based on students’ learning history and a tu-
tor’s pedagogic oversight. While much progress has
been made since its introduction (Karampiperis and
Sampson, 2004; Dario et al., 2005), a weakness of
these traditional approaches is the need for manually
structuring the information for its use in the database.
Consequently, this often results in limited diversity of
available course types. More recent projects like Mo-
torAI (del Carmen Rodrı́guez-Hernández et al., 2020)
have addressed this concern by enabling the use of
more readily available data sources like PDF docu-
ments and WikiData (Vrandečić and Krötzsch, 2014).

To further reduce the need for structure, we use
web-scraping. This approach is similar to the one
used by the “Flexible” plugin (Parahonco and Petic,
2021) that scrapes relevant websites to downloads
HTML or PDF files. The work that, to our knowledge,
is the most related to ours, is the smart course gener-
ator from VitalSource1. Similar to us, it relies on the
content provided by the student to build an interac-
tive learning environment consisting of a sequence of
questions. However, VitalSource relies on fill-in-the-
blanks questions, while here we go a step further and
generate questions with and without multiple-choice
options. Our proposed pipeline consists of a question
and a distractor generator. The question generator is
built based on previous work (Cheng et al., 2021),
while the distractor generator is a contribution of this
work as no existing solution worked in our setup.
The task of distractor generation consists of providing
misleading answer options to a multiple-choice ques-
tion. Notable research in that field was conducted by
Zhaopeng Qiu et al. (Qiu et al., 2020) who introduced
the EDGE framework that is the current state-of-the-
art on the RACE dataset (Lai et al., 2017) for read-
ing comprehension. Moreover, Siyu Ren, et al. (Ren
and Zhu, 2020) achieved very good results on hu-
man evaluation of cloze-style open-domain multiple-
choice questions. A novel feature of our distractor
generator with respect to previous is its ability to use
the outputs of the different stages of our pipeline. As
such, it can rely on much more context than distrac-
tors developed on datasets like RACE.

1https://get.vitalsource.com

3 COURSE GENERATION
PIPELINE

Our proposed information processing pipeline is de-
picted in Figure 1. Our pipeline consists of 4 stages:
First, an input stage converts supported source types
into web pages. Next, the scraping stage processes
the web pages to extract relevant text and tables.
Third, the question generation stage uses the ex-
tracted texts and tables to generate multiple-choice
questions. Finally, an optional exercise generation
stage assembles the questions and sources into inter-
active exercises that can be directly started without
prior knowledge of the study topic.

3.1 Input Stage

Our pipeline supports three different types of inputs.
Namely PDF Documents, Website URLs and Topic
descriptions. Topic descriptions consist of a topic ti-
tle/keyword and an optional specification that can be
helpful to further narrow the search.

Processing Documents and Websites. Both PDF
Documents and Website URLs are transformed into
a web page using a Firefox browser2, before being
handed to the next stage.

Processing Topic Descriptions. The topic title is
used as a query and executed by a search engine to
obtain Website URLs. For our purposes, we choose
to use the Google search engine and limit the search
results to the first page. We choose Google because
of its popularity and ease of limiting the output lan-
guages to English. Our method, however, also works
with any other search engine that provides a web page
interface. The found website URLs are then pro-
cessed in the same manner as described in the pre-
vious paragraph so that the next stage receives a list
of loaded web pages.

3.2 Scraper Stage

The purpose of the scraper is to identify and extract
the relevant text and tables from a website. It achieves
this by first identifying the text elements in a page
and then classifying them into relevant or irrelevant
text passages based on their properties. Later pipeline
stages rely heavily on the extracted text quality to pro-
duce questions and exercises. The text output from
the scraper is therefore treated as a guess that can be

2We note that Firefox transcribes PDF documents to
HTML pages by default.
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Figure 1: Diagram of the pipeline. The 4 stages are highlighted in orange, blue, green and purple respectively. Solid lined
arrows denote a data flow inside the pipeline while dashed arrows denote exposure of the data in the application interface.

refined by the user through the application interface if
necessary. We therefore built the scraper such that it
visualizes the text that has been selected and gives the
user the option to adjust the selection.

We select Selenium3 as our scraping tool. It pro-
vides an automated browser environment in which it
is possible to run dynamic content, interact with the
loaded web pages as well as inject JavaScript code.
A major factor behind this choice is the possibility
to process PDF documents like websites without any
overhead. While our scraper works for web pages
of arbitrary finite length, the computational cost in-
volved with text classification and later question gen-
eration from large texts made us constrain our page
size to a maximum of 18000 pixels in length with a
constant width of 720 pixels.

In order to communicate the text selection to the
user, the scraper provides a screenshot of the web
page over which the identified text boundary boxes
are laid over. The text boundary boxes are obtained
by accessing the lowest level rectangles in the Doc-
ument Object Model (DOM) called DOMRect. Those
rectangles only provide position and size information
and are the result of processing the HTML code to-
gether with the CSS styling with respect to the win-
dow size. A difficulty we encountered was the pres-

3https://www.selenium.dev/

ence of popup windows and backdrops that conceal
the content of some pages, making it hard for the user
to refine the text selection. The most reliable way we
found to fix this issue required disabling the embed-
ded JavaScript. The trade-off to this solution is that
dynamic content will not be loaded, which can cause
some websites to break.

3.2.1 Text Extraction and Classification

Extraction starts by identifying the individual HTML
elements that contain displayable text and returning
them as a list. For each identified element we then
determine properties like position, size, styling, and
visibility by querying the browser. We then filter out
elements that are set to be invisible and thus do not
contain information a user would see.

A challenge we faced when building a classifier
to label the relevant text elements was the lack of an
existing dataset to train statistical models. We, there-
fore, handcrafted a small dataset and tested multiple
models with different complexity.

Dataset. The dataset consists of 30 labeled web
pages taken from 10 different domains (e.g.,
Wikipedia and the BBC News website are two dif-
ferent domains, while articles on these web sites are
considered as web pages from these domains). Note
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that web pages from the same domain tend to follow
a similar Document Object Model (DOM) tree struc-
ture, therefore, the specification. Each page contains
on average 510 labeled text elements, bringing the to-
tal number of labeled text samples to 15,291. For our
evaluation, the 30 pages in the dataset were split into
20 training pages and 10 pages used for validation.
The split was done such that the training set contained
pages from 5 domains. Web pages from the same do-
mains were also present in 5 of the pages in the vali-
dation set. The remaining 5 pages in the validation set
were from new domains, which had a different overall
page structure compared to the pages in the training
set.

Models. We tested four different approaches for
classification based on bounding box properties,
DOM tree structure, and text cohesion. Bounding box
properties are directly deduced from the DOMRect el-
ement and contain information about size and posi-
tion. The (relative) location of each text element in
the DOM Tree of the web page encodes further rele-
vant information regarding the page layout surround-
ing an element. Finally, text cohesion can further help
to classify individual text elements. We model text
cohesion by iterating through all the text elements in
the order of identification and filtering out the sub-
set of elements that form cohesive sentences. Table 1
summarizes which properties are used by each of the
models we tried. In particular, we compared the fol-
lowing approaches:

DOMRect Classifier. A gradient boosted decision
tree provided by the CatBoost (Prokhorenkova
et al., 2019) library. It uses the position and size
properties of the text element bounding boxes.

DOM Tree Similarity (DTS). This approach keeps
a database of labeled DOM subtrees from the
training set. A new DOM tree is then labeled
by finding the largest matching subtree in the
database for each subtree of the DOM Tree.

Text Translator. Here we concatenate text elements
together in the order they were identified. The re-
sulting text is then processed by a T5 transformer
which was trained to transcribe away all the irrel-
evant text.

Token Classifier (TC). Similar to the previous
model, this model concatenates the list of text
elements and feeds them to a T5 transformer.
However, instead of transcribing the text, it
classifies each individual token.

DTS + TC (Ensemble). As a final model, we took a
soft voting ensemble consisting of the DOM Tree
Similarity classifier and the Token Classifier.

Table 1: Properties used by the text extraction classifiers.

Model Used properties
Bounds Tree Text

DOMRect Classifier Yes No No
DOM Tree Similarity No Yes No
Text Translator No No Yes
Token Classifier No No Yes
DTS + TC (Ensemble) No Yes Yes

Table 2: Table showing the accuracy of the four models pre-
sented in Section 3.2.1. The first number gives the accuracy
for same-domain web pages while the second number gives
the accuracy for different-domain web pages.

Model Accuracy
DOMRect Classifier 76% / 60%
DOM Tree Similarity (DTS) 97% /65%
Text Translator 57% / 57%
Token Classifier (TC) 54% / 55%
DTS + TC (Ensemble) 96% / 65%

Evaluation. The evaluation results shown in Ta-
ble 2 are split according to the same-domains and
different-domains parts of the validation set. As can
be seen, the DOM Tree Similarity (DTS) classifier
performed best in both same and cross-domain ac-
curacy by a large margin. Approaches based purely
on text coherence like the Token Classifier performed
worst. In contrast to our expectations, the Token Clas-
sifier and DTS classifier did not complement each
other very well and the DTS+TC ensemble did not
improve over the baseline. We therefore went on with
the DTS model.

Table Extraction. Apart from raw text we also ex-
tract tables from the processed web pages. To do so,
we start by searching for all tables that contain at least
one text element that was classified as relevant. We
then extract the HTML table code and annotate rows
and entries based on the relevance of the text entries
they contain.

Similarity Computation. To facilitate refinement
of the text element classification by the user, we com-
pute a pairwise similarity measure between each pair
of text elements. This measure is used to propagate a
label adjustment by the user to similar elements, i.e.,
elements similar to the user-labeled one will change
their label accordingly.

3.3 Question Generator

The generation stage takes the extracted text and ta-
bles from the scraping stage and produces questions.
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Question generation from text was previously stud-
ied (Cheng et al., 2021). The question generation
pipeline they introduced was shown to be capable of
creating questions rivaling human ones in terms of
correctness and comprehensiveness. To build on top
of those findings, we reused the same answer extrac-
tion and question generation method but retrained the
models on a larger dataset presented below. Our re-
sulting pipeline supports three types of questions:

Open Response. Questions that allow respondents
to answer in open text format so that they can an-
swer based on their complete knowledge, feeling,
and understanding.

Multiple Choice. Questions that have a list of an-
swer options to choose from.

Table Filling. Questions that consist of a table with
missing entries that need to be filled.

For Open Response and Multiple Choice ques-
tions we follow (Cheng et al., 2021) and first ex-
tract potential answers from the text and then generate
questions conditioned on the extracted answers.

Answer Extraction. Answer extraction consists of
finding excerpts in a text that could be a suitable an-
swer to a question. This was achieved by fine-tuning a
T5 (Raffel et al., 2020) model from Huggingface4 on
the dataset presented below. To achieve better control
on the output quality, the input text was sequenced
into sentences using the PunktSentenceTokenizer
from the NLTK library. The model was then trained
to take a sentence together with its context and to out-
put the answer that was deduced from this sentence.

To account for the text diversity encountered when
scraping arbitrary web pages we choose to use a com-
bination of multiple datasets to train our model. We
made use of the MRQA (Fisch et al., 2019) dataset
which is already a combination of 18 existing Q&A
datasets and we further included MOCHA (Chen
et al., 2020), a dataset aimed at reading comprehen-
sion. The datasets were obtained from Huggingface5

which already provides a train, validation, and test
split. All our models that use this dataset followed
the given split for their respective tasks.

Question Generation. Question generation takes
an extracted answer and the corresponding context as
input and tries to generate a fitting question. Similar
to the answer extraction stage a pre-trained T5 model
was used and fine-tuned on our merged dataset.

4https://huggingface.co/t5-base
5https://huggingface.co/datasets

3.3.1 Distractor Generation

Distractor generation is the stage responsible for pro-
viding misleading answer options for multiple-choice
questions. We call those misleading answer options
distractors. Three factors can be used to generate dis-
tractors. Namely: The generated question, the ex-
tracted answer, and finally the full text of the doc-
ument used to generate the question. Note that the
latter is not commonly accessible in distractor gener-
ation tasks based on datasets like RACE (Lai et al.,
2017) and is a key factor that strengthens our envi-
ronment. The distractor generation is achieved using
an ensemble of different strategies. Table 3 lists all
the strategies together with the properties they make
use of.

When generating distractors each strategy returns
a list of answer options. The answer options from
all strategies are then aggregated, filtered, and sorted
by quality using the distractor evaluator presented in
Section 3.3.2. The top x results, where x is the number
of desired distractors, are returned as final distractors.

T5 Closed-book. This strategy takes a question and
tries to answer it without further information. The
motivation behind this approach is that it could ap-
proximate the answers a respondent would give with-
out reading the source text. The strategy is imple-
mented by a T5 model that was fine-tuned on our
merged dataset.

In early experiments we noted that this model
tends to be biased towards certain answer formula-
tions like starting answers with “just”, “nearly” or
“about”. This bias is harmless when considering the
answer separately, but when combined with the ex-
tracted answer and the remaining answer options the
result tends to stand out. This makes it easy for re-
spondents to spot the distractors generated by this
model. We, therefore, added an additional filter that
removes certain prefixes and answer formulations.

Entity Similarity. In this strategy, we made use of
Named Entity Recognition (NER) to detect entities in
the answer and replace them with similar entities from
the source document. The spaCy6 library is used to
detect the entities in the answer and source document.
The library also classifies the entities in types like Per-
son, Organization, Date, Cardinal, etc.7 The entities
detected in the answer are then replaced uniformly at
random with an entity from the source document that
has the same class.

6https://spacy.io/
7You can find a complete list here: https://spacy.io/api/

data-formats#named-entities
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Table 3: Table showing what information is used by each of
the distractor generation models.

Model Used information
Question Answer Context

T5 closed-book Yes No No
Entity similarity No Yes Yes
Sense2vec No Yes No
Sense2vec sub. No Yes No
Semantic Net. No Yes No

Sense2vec. This strategy makes use of
Sense2vec (Trask et al., 2015) word vectors to
suggest similar answer options. Sense2vec is an
extension of the famous word2vec (Mikolov et al.,
2013) algorithm that adds context sensitivity to
the word embeddings. Finding a similar answer
option consists of a x nearest neighbor search in the
embedding space, where x is the number of desired
distractors.

In contrast to our expectation, this strategy rarely
creates synonyms and the ones that are created are re-
moved at the filtering stage presented in Section 3.3.2.
A weakness of this strategy is that generation is not
possible for answers that have no direct word embed-
ding.8 To alleviate this issue we also introduced the
strategy below.

Sense2vec Substitution. This strategy makes use of
Named Entity Recognition (NER) to detect entities
in the answer and then uses Sense2vec (Trask et al.,
2015) to replace them with similar concepts. This
makes it possible to apply the previous strategy to ar-
bitrary answers. We want to emphasize, that this is
not as general as the Sense2vec strategy, as some an-
swers are not entities and will thus not be covered by
this strategy. In practice, the extracted answer length
strongly affects the quality of the entity recognition.
As a result, this strategy struggles with answers con-
sisting of two words or less. It can, therefore, be seen
as a complement to the previous strategy.

Semantic Network. This strategy relies on extract-
ing entities from the answer and using a semantic net-
work to substitute them with related ones. For our
pipeline, we used WikiData (Vrandečić and Krötzsch,
2014) as the semantic network. To find a similar en-
tity, we first query the properties of the extracted en-
tity and then initiate a second query to find different
entities that share some of those properties.

8In practice, about 45% of the extracted answers can not
be processed by this method.

3.3.2 Distractor Evaluation

The distractor evaluation stage aims to select the best
distractors from the list of generated answer options
obtained at the previous stage. It enables the selection
of distractors based on the strengths of each distractor
generation strategy. The stage has three steps.

The first step consists of filtering out all redun-
dant answer options. An answer option is considered
redundant if deleting all but alphanumeric characters
results in the same string.

The second step evaluates how well each answer
option fits the generated question. The evaluation is
done using a binary classifier that was trained to dis-
tinguish correct answers from distractors based solely
on the question and the answer option itself. The
training was done on the SQuAD (Rajpurkar et al.,
2016) dataset together with answer options generated
using the previous stage. The model selected for clas-
sification is a case sensitive DistilBert (Sanh et al.,
2020) model with pre-trained weights from Huggin-
face9. We note that for our pipeline we repeated the
training step three times. Each time we used the dis-
tractors obtained after the updated evaluation stage.

Once the classifier provides a score for each an-
swer option, we use a threshold to filter out unlikely
candidates. The score ranges from 0 to 1 with 1 de-
scribing the better fit. The threshold was set to 0.5%
and was determined using a visual inspection of 100
questions but was not tuned as no dataset about dis-
tractor quality was available at the time.

The last step consists of computing the similarity
between each answer choice and removing distractors
that are too similar, such that a minimum dissimilar-
ity threshold is met. An answer choice can be ei-
ther a distractor or the extracted answer. This step
is achieved by first embedding each answer choice
into a 768-dimensional vector and then computing
the pairwise cosine similarities. To compute the em-
bedding we use a pre-trained sentence BERT trans-
former (Reimers and Gurevych, 2019). The task of
removing distractors that are too close is then equiv-
alent to finding a vertex cover , where vertices repre-
sent answer choices that are connected by edges if a
similarity threshold is exceeded. In practice, we set
the maximum allowed cosine similarity to be 0.85.

After making sure that all thresholds are met, the
remaining distractors are ordered according to their
question matching score and only the top x distractors
are returned, where x is the number of desired distrac-
tors.

In practice, we observed that some questions have
less than x distractors which is due to the thresholds

9https://huggingface.co/distilbert-base-cased
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we set and the tendency of some generators, like the
T5 closed-book generator, to lack diversity in their
output.

3.3.3 Table Question Generation

Table question generation consists of using the tables
given by the scraper and generating questions about
them. A great challenge we faced was the diverse
usage of tables in web pages, making it often diffi-
cult to correctly interpret them. To solve this issue
we decided to transform the task of question gener-
ation from tables to table filling. The benefit of this
approach is that the interpretation of the table itself is
deferred to the respondent.

3.3.4 Question Filtering

After generating multiple diverse questions, a ques-
tion filtering stage is responsible for removing ques-
tions that are too similar to each other. It consists
of first filtering out questions that use the same for-
mulation or distractors and then making sure that the
remaining questions meet a minimum dissimilarity
threshold. Similar to the last step of the distrac-
tor evaluation, presented in Section 3.3.2, the ques-
tion formulations are first embedded using pre-trained
sentence BERT transformer (Reimers and Gurevych,
2019). Then the cosine similarity is computed and
questions are removed using the vertex cover ap-
proach. Ties are resolved by keeping the question
with the longest extracted answer.

3.4 Exercise Generation

The exercise generator aims at enabling a study en-
vironment that teaches the content from the sources
and questions previously obtained from the question
generation stage. The study environment consists of
a step-wise introduction of paragraphs together with
an occasional question to practice the newly acquired
knowledge. The key factor needed to enable this step-
wise study is the generation of a pairing between the
context read by the user and the shown question. In
this section, we are going to introduce a method to
combine the different sources and to determine a suit-
able question based on similarities between source
paragraphs.

3.4.1 Source Coupling

The idea behind the source coupling is to transform
the source texts into a sequence of paragraphs while
keeping track of potential information redundancies
that can be used to select questions. The information

redundancies will be encoded in the form of a para-
graph similarity. Furthermore, to enable maneuver-
ing to specific subjects, we also provide titles for each
subtopic.

Instead of working on the raw extracted source
text like the question generator, we instead use the
extracted paragraphs that are provided by the scrap-
ing stage presented in Section 3.2. Those paragraphs
can be seen as information containers. To determine
if two of those containers share information, we com-
pute a pairwise similarity measure between each pair
of paragraphs.

The pairwise similarity is computed by first com-
puting an embedding for each paragraph and then cal-
culating the cosine similarity. To compute the em-
bedding of a paragraph we start with extracting the
sentences using the PunktSentenceTokenizer from
the NLTK library. Each sentence is then embedded
into a 768-dimensional vector by using a pre-trained
sentence BERT transformer (Reimers and Gurevych,
2019), the same transformer we used to compute the
answer similarities before. The paragraph embedding
is then obtained by adding the vectors together and
normalizing them to unit length.

To facilitate the browsing of topics in the list
of paragraphs, we group consecutive paragraphs to-
gether and assign them a title. Titles are found by
loading the HTML code where a paragraph was ex-
tracted from and retrieving the list of headings above
that paragraph. Paragraphs that share the same head-
ing are then grouped together.

When concatenating the source texts we keep the
order of paragraphs inside the sources but we order
the sources by specificity so as to start with the source
that gives the broadest overview over a topic. The
specificity of a source is determined by the similarity
it shares with other sources. An assumption that is
made is that less specific information is more likely
to also occur in different source texts. Therefore, we
decided to measure the specificity of a source by aver-
aging the pairwise similarities of all paragraphs inside
the source with paragraphs from all other sources.
Note that this can be done efficiently using our para-
graph similarity introduced above. Once the order
is determined we finally concatenate the paragraphs
from all the sources together. We thereby split the
paragraphs into two groups: One that is shown to the
user, and one that contains paragraphs with a high
similarity to the ones that are shown. The second
group will not directly be shown to the user, but is
still used for exercise generation as discussed next.
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3.4.2 Question Selection

An exercise is built such that after a few paragraphs
have been presented to the user, a question is asked.
The questions asked are thereby selected from the
ones previously generated.10 Before the selection
process can begin, each paragraph needs to reference
the questions that were generated from it. We then de-
termine two groups of candidate questions. Group A
consists of all the questions referenced by seen para-
graphs and Group B consists of questions referenced
by paragraphs that share strong similarity with at least
one of the seen paragraphs. In practice, strong simi-
larity is defined as a cosine measure larger than 0.5.
Selecting a question then consists of randomly choos-
ing one group. If it is group A we preferably choose a
question from a paragraph seen longer than 3 minutes
ago. For group B on the other hand, we choose a ques-
tion from a paragraph that shares a similarity with the
last paragraph the user read. In practice, we set the
probability to choose group B over group A to 75%.
In this setup the user gets iteratively asked about the
information that he/she just read. While in some cases
questions from group B cannot be answered with the
information presented to the user so far, we see this as
a feature rather than a bug as it encourages the user to
actively think about the topic.

4 USER STUDY

Apart from the quantitative evaluations presented so
far, we also investigate the quality of our pipeline pre-
sented in Section 3.3. As the answer extraction and
question generation stage have previously been stud-
ied (Cheng et al., 2021), our evaluation is going to
focus on the distractors.

This evaluation is conducted as survey where par-
ticipants were shown the source text used for gen-
eration, the multiple-choice questions, and the sen-
tence where the answer was extracted from. The
exact layout of the survey can be found at https:
//adaptive-teaching.com/evaluation.

The survey was conducted with 40 participants us-
ing Amazon’s Mechanical Turk11. Each participant
had to evaluate 30 questions. The 30 questions were
split into 20 questions generated by our pipeline, and
10 questions taken from the ARC dataset (Clark et al.,
2018) which contains grade-school level, multiple-
choice science questions. The choice of the dataset

10The application allows the user to also review gener-
ated questions before creating the exercise.

11https://www.mturk.com/

Table 4: Evaluation questions to be answered for each
multiple-choice question. The scale is obtained by linearly
mapping the answer options to an interval between 1 and
5 or 1 and 3 respectively. We recall that an answer option
refers to either a distractor or the extracted answer.

Question Answers

How would you rate the quality
of the question?

Very Bad,
Bad,
Acceptable,
Good,
Excellent

How would you rate the quality
of each individual answer option?

(Question is answered separately
for each answer option)

Very Bad,
Bad,
Acceptable,
Good,
Excellent

Can the question be answered
using the highlighted text?

(Refers to the sentence the
answer was extracted from)

Yes,
Yes partially,
No

Is the highlighted answer option
correct?

(Refers to the extracted answer)

Yes,
Yes partially,
No

was motivated by the need to have questions resem-
bling the ones generated by our pipeline while also
providing multiple answer options and a source text.
While the original ARC dataset does not provide the
latter, there exists a version augmented with context
sentences12. To reduce volatility, each question was
evaluated separately by 5 participants, bringing the
total amount of evaluated questions to 240 with 160
generated ones as opposed to 80 hand-crafted ques-
tions from the ARC dataset. The choice for this un-
even split is motivated by our goal to also evaluate our
5 different distractor generation strategies presented
in Section 3.3.1.

Before evaluating each question the participant
was asked to read the text excerpt that was used to
generate the question. The evaluation itself consisted
of the four questions listed in Table 4. To answer the
last two questions, we highlighted the sentence that
the answer was extracted from.

4.1 Question Similarity

To ensure that our distractor evaluation is not con-
founded by discrepancies between the generated
and hand-crafted questions themselves, we evaluated
question quality, question answerability, and answer

12https://www.tensorflow.org/datasets/catalog/
ai2 arc with ir
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Figure 2: Comparison of generated (turquoise) and hand-
crafted (cerise) questions in terms of question quality, ques-
tion answerability and answer correctness. All metrics were
evaluated by the subjects of the study. Feedback scores
were obtained by mapping the user evaluation options to
a linear scale and averaging them. The error bars show the
99% confidence interval of a t-distribution.

correctness. A comparison of those three averaged
metrics can be seen in Figure 2. While no significant
difference in question quality was observed between
the two sources, the generated questions had an edge
over the hand-crafted ones both in terms of question
answerability and answer correctness. We explain this
difference by the fact that the source text for the ARC
dataset was obtained by searching for an excerpt that
answers the question instead of generating the ques-
tion based on the source text. However, we do not be-
lieve that this difference is significant enough to have
a major impact on the upcoming results.

4.2 Distractor Quality

The distractor quality was evaluated on a scale from 1
to 5 where 1 represents the worse end of the spectrum.
As can be seen in Figure 3 the overall quality of the
hand-crafted distractors was superior by a margin of
0.26 on the feedback scale. While the fraction of dis-
tractors with excellent and acceptable quality is very
similar between the two sources, our generation pro-
cess tends to produce fewer good distractors in favor
of very bad ones. We explain this behavior by remind-
ing that only 1 of the 5 distractor generators presented
in Section 3.3.1 make use of the question context.
Therefore, it is to be expected that some distractors
make little sense in the true context of the question.
Still, the result suggests that the overall quality of the
generated distractors is surprisingly close to the qual-
ity of hand-crafted ones.

Next, we juxtapose the quality evaluation of dis-
tractors and answers. Figure 4 shows the qualities of
generated distractors compared to extracted answers
and Figure 5 does the same for the hand-crafted an-

Figure 3: Evaluated quality comparison between generated
(turquoise) and hand-crafted (cerise) distractors. The plot
on the left shows the fraction of distractors assigned to each
evaluation option. The plot on the right shows the average
feedback score obtained by linearly mapping the user eval-
uation to a scale from 1 (Very Bad) to 5 (Excellent). The
error bars on the right show the 99% confidence interval of
a t-distribution.

Figure 4: Evaluated quality comparison between generated
distractors (turquoise) and extracted answers (green). The
plot on the left shows the fraction of distractors/answers
assigned to each evaluation option. The plot on the right
shows the average feedback score obtained by linearly map-
ping the user evaluation to a scale from 1 (Very Bad) to 5
(Excellent). The error bars on the right show the 99% con-
fidence interval of a t-distribution.

swer options. As can be seen, the quality gap between
generated distractors and extracted answers is a sig-
nificant 0.74 on the feedback scale. From the distribu-
tion, it is visible that 72.44% of the extracted answers
are rated good or better, while only 48.01% of the
generated distractors get the same rating. A less sig-
nificant discrepancy can be seen on the human-crafted
answer options. There the difference on the feedback
scale is only 0.43.

4.2.1 Distractor Quality across Generators

Next we compare the distractor quality across the 5
generators presented in Section 3.3.1. As can be seen
in Figure 6, all generators performed very similarly
on average. However, when comparing the feedback
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Figure 5: Evaluated quality comparison between hand-
crafted distractors (cerise) and answers (melon). The plot
on the left shows the fraction of distractors/answers as-
signed to each evaluation option. The plot on the right
shows the average feedback score obtained by linearly map-
ping the user evaluation to a scale from 1 (Very Bad) to 5
(Excellent). The error bars on the right show the 99% con-
fidence interval of a t-distribution.

Figure 6: Evaluated quality comparison between distractor
generators. The plot on the left shows the fraction of dis-
tractors assigned to each evaluation option. The plot on the
right shows the average feedback score obtained by linearly
mapping the user evaluation to a scale from 1 (Very Bad)
to 5 (Excellent). The error bars on the right show the 99%
confidence interval of a t-distribution.

distributions, there are some interesting differences.
Notably, Sense2vec and Entity similarity performed
very similarly across the spectrum even though they
use very different replacement strategies. In contrast,
Sense2vec substitution has the most distinct distribu-
tion and even produced 54.06% of distractors with a
good or better rating. This is on par with the hand-
crafted distractors where 53.69% have such a rating.
However, the Sense2vec substitution model was only
responsible for 3.9% of the total amount of distrac-
tors. This is caused by the limitation of only handling
answers where named entity recognition is possible
(See Section 3.3.1 for more details).

Figure 7: Comparison of the computed distractor fitness
with the user evaluation. The distractor fitness is computed
using the question matching model presented Section 3.3.2.
Each blue marker represents a distractor. The average feed-
back score is computed by taking the mean result over all
users who evaluated that distractor. The red line shows a
logistic regression curve with a 95% confidence interval.

4.2.2 Question Matching Score

Finally, we also evaluate if the question matching
score presented in Section 3.3.2 is well correlated
with the perceived question quality. Unfortunately, as
seen in Figure 7, that correlation is very weak. This
is partially due to the fact that the model tends to be
very partial with 68% of the samples scoring either
below 10% or above 90%. These results can be ex-
plained in that the question matching model can rely
on other queues than the actual information content
to distinguish between distractors and answers. One
of those possible queues could be the distractor for-
mulations that are different from those of the correct
answers. In particular, the lack of diversity in the dis-
tractor generator output can make it possible for the
question matching model to remember how a distrac-
tor is typically formulated. We note that during devel-
opment, a lack of diversity was noted in both the T5
closed-book and Semantic network generators.

5 CONCLUSION

We presented an end to end system to go from query
keywords to full, interactive courses on a topic. Our
evaluation shows that our pipeline is capable of pro-
ducing distractors with a quality reasonably close to
human-crafted ones, with no significant difference in
the quality of our 5 distractor generators. However,
there is room for improvement on the ability of the
distractors to fool the user. One way to do so is to use
more context in the distractor generators.

We deem our system as a valuable step towards a
fully operational tool to automatically generate and
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structure learning materials. Given the significant
savings that such systems can represent in terms of
time and effort from education professionals, we are
convinced that they will become the angular stone of
future education tools and we thus encourage further
work on this topic.
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