Cheng, F., Zhang, X., He, B., Luo, T., and Wang, W.
(2013). A survey of learning to rank for real-time
twitter search. In Zu, Q., Hu, B., and Elc¸i, A., editors,
Pervasive Computing and the Networked World, pages
150–164, Berlin, Heidelberg. Springer Berlin Heidel-
berg.
Duhan, N., Sharma, A. K., and Bhatia, K. K. (2009). Page
ranking algorithms: A survey. In 2009 IEEE Interna-
tional Advance Computing Conference, pages 1530–
1537.
Garg, Y. and Jain, M. (2015). A brief survey of various rank-
ing algorithms for web page retrieval in web structure
mining. International Journal of Engineering Trends
and Technology, 21(3):168–172.
Geng, X., Liu, T.-Y., Qin, T., and Li, H. (2007). Fea-
ture selection for ranking. In Proceedings of the 30th
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SI-
GIR ’07, page 407–414, New York, NY, USA. Asso-
ciation for Computing Machinery.
Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H.,
Wu, C., Croft, W. B., and Cheng, X. (2020). A
deep look into neural ranking models for informa-
tion retrieval. Information Processing & Management,
57(6):102067.
Gupta, S., Duhan, N., Bansal, P., and Sidhu, J. (2014). Page
ranking algorithms in online digital libraries: A sur-
vey. In Proceedings of 3rd International Conference
on Reliability, Infocom Technologies and Optimiza-
tion, pages 1–6.
Harrag, F. and Khamliche, M. (2020). Mining stack over-
flow: a recommender systems-based model.
He, C., Wang, C., Zhong, Y.-X., and Li, R.-F. (2008). A sur-
vey on learning to rank. In 2008 International Con-
ference on Machine Learning and Cybernetics, vol-
ume 3, pages 1734–1739.
Hong, L., Bekkerman, R., Adler, J., and Davison, B. D.
(2012). Learning to rank social update streams. In
Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’12, page 651–660, New York,
NY, USA. Association for Computing Machinery.
Ibrahim, M. and Carman, M. (2016). Comparing pointwise
and listwise objective functions for random-forest-
based learning-to-rank. ACM Trans. Inf. Syst., 34(4).
Keyhanipour, A. H., Moshiri, B., Piroozmand, M., Oroum-
chian, F., and Moeini, A. (2016a). Learning to rank
with click-through features in a reinforcement learn-
ing framework. International Journal of Web Infor-
mation Systems.
Keyhanipour, A. H., Moshiri, B., Piroozmand, M., Oroum-
chian, F., and Moeini, A. (2016b). Learning to rank
with click-through features in a reinforcement learn-
ing framework. Int. J. Web Inf. Syst., 12(4):448–476.
Kowalski, G. J. and Maybury, M. T. (2002). Introduction
to information retrieval systems. Information Storage
and Retrieval Systems: Theory and Implementation,
pages 1–25.
Lai, H., Pan, Y., Liu, C., Lin, L., and Wu, J. (2013). Sparse
learning-to-rank via an efficient primal-dual algo-
rithm. IEEE Transactions on Computers, 62(6):1221–
1233.
Lal, N. and Qamar, S. (2015). Comparison of ranking algo-
rithms with dataspace. In 2015 International Confer-
ence on Advances in Computer Engineering and Ap-
plications, pages 565–572.
Li, B., Chaudhuri, S., and Tewari, A. (2016). Handling class
imbalance in link prediction using learning to rank
techniques. Proceedings of the AAAI Conference on
Artificial Intelligence, 30(1).
Li, H. (2011). Learning to Rank for Information Retrieval
and Natural Language Processing. Synthesis Lec-
tures on Human Language Technologies. Morgan &
Claypool Publishers.
LI, H. (2011). A short introduction to learning to rank.
IEICE Transactions on Information and Systems,
E94.D(10):1854–1862.
Li, P., Burges, C. J. C., and Wu, Q. (2007). Mcrank: Learn-
ing to rank using multiple classification and gradient
boosting. In Proceedings of the 20th International
Conference on Neural Information Processing Sys-
tems, NIPS’07, page 897–904, Red Hook, NY, USA.
Curran Associates Inc.
Liu, T. (2011). Learning to Rank for Information Retrieval.
Springer.
Ma, Q., He, B., and Xu, J. (2016). Direct measurement of
training query quality for learning to rank. In Proceed-
ings of the 31st Annual ACM Symposium on Applied
Computing, SAC ’16, page 1035–1040, New York,
NY, USA. Association for Computing Machinery.
McFee, B. and Lanckriet, G. (2010). Metric learning to
rank. In Proceedings of the 27th International Confer-
ence on International Conference on Machine Learn-
ing, ICML’10, page 775–782, Madison, WI, USA.
Omnipress.
Moon, T., Smola, A., Chang, Y., and Zheng, Z. (2010). In-
tervalrank: Isotonic regression with listwise and pair-
wise constraints. In Proceedings of the Third ACM In-
ternational Conference on Web Search and Data Min-
ing, WSDM ’10, page 151–160, New York, NY, USA.
Association for Computing Machinery.
Phophalia, A. (2011). A survey on learning to rank (letor)
approaches in information retrieval. In 2011 Nirma
University International Conference on Engineering,
pages 1–6.
Qin, T. and Liu, T. (2013). Introducing LETOR 4.0 datasets.
CoRR, abs/1306.2597.
Qin, T., Liu, T.-Y., Xu, J., and Li, H. (2010). Letor: A
benchmark collection for research on learning to rank
for information retrieval. Inf. Retr., 13(4):346–374.
Qin, T., Liu, T.-Y., Zhang, X.-D., Wang, D.-S., and Li, H.
(2008a). Global ranking using continuous conditional
random fields. In Proceedings of the 21st Interna-
tional Conference on Neural Information Processing
Systems, NIPS’08, page 1281–1288, Red Hook, NY,
USA. Curran Associates Inc.
Qin, T., Zhang, X.-D., Tsai, M.-F., Wang, D.-S., Liu, T.-
Y., and Li, H. (2008b). Query-level loss functions
for information retrieval. Information Processing &
Management, 44(2):838–855. Evaluating Exploratory
A Literature Review on Methods for Learning to Rank
551