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Abstract: Business process modeling is an established method to describe workflows in enterprises. The resulting models
contain tasks that are executed by process participants. If the descriptions of such tasks are too abstract or do
not contain all relevant details of a business process, deviating process executions may be observed. This leads
to reduced process success regarding different criteria, e.g., product quality. Existing improvement approaches
are not able to identify missing details in process models that have an impact on the overall process success.
In this work, we present an approach to extract relevant process details from image data. Deep learning
techniques are used to predict the success of process executions. We use LIME explanation models to extract
relevant features and values that are related to positive process predictions. We show how a general conclusion
of these explanations can be derived by applying further image mining techniques. We extensively evaluate
our approach by experiments and demonstrate the extension of an existing process model by identified details.

1 INTRODUCTION

Business process modeling languages are used to de-
scribe business processes. Business process models
provide insights into the structure of processes and
potential for process improvement. Usually, process
models are designed by process experts and thus con-
tain all information that have been identified as impor-
tant by experience. However, the results of process
model executions might not be optimal. It may even
be observed that the execution of the same process
model results in different outcomes that differ with
respect to various criteria, e.g., production time, qual-
ity or cost of the process output. Such observations
lead to the assumption that the process is not modeled
in sufficient detail or quality. In this research we ex-
plicitly focus on missing details of process models as
cause for non-optimal executions. We identify three
reasons why a process model is lacking details.

(i) Process modelers are often not sure how de-
tailed a process has to be modeled in order to guar-
antee optimal executions. Although, there are a lot
of modeling tools available, none of them provides
modeling guidelines in this sense (Kluza et al., 2013).
There are styling guidelines and modeling advice in
order to keep aspects like clarity (e.g., (Becker et al.,

2000), (Mendling et al., 2010)), but there is no in-
struction how detailed a process should be designed.
Even process experts are not aware of all details or
which details are relevant enough to model (Nieder-
mann et al., 2010). Input constellations or prerequi-
sites are taken as granted and are not considered in
process descriptions. Due to lack of awareness, im-
portant details are missing in a process model.

(ii) Modelers know which details are relevant for
process success, but they cannot integrate them ap-
propriately into a model. Consider a task that allows
multiple input constellations, but not all of them lead
to successful process executions. This information is
hard to represent in a process model. In such cases,
the restricted expressiveness of established modeling
languages leads to the lack of modeling details. To ex-
tend the usability and expressiveness of existing mod-
eling languages, different approaches have been de-
veloped. For example, media data can be attached to
modeling elements (Wiedmann, 2017). Nevertheless,
the relevant information is missing in the model as
long as no suitable representation method is available.

(iii) Some information can be intentionally omit-
ted in the process model. Complex processes lead
to complex models which contain hundreds of mod-
eling elements. Large process models, in turn, lead
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to overload. In the worst case, process participants
are unable to read and execute the tasks appropriately.
Therefore, one goal of modeling is to avoid too com-
plex models. This requirement is hard to meet, while
process designers try to reduce the size of models by
(a) omitting details during modeling that are known
but do not occur often enough or (b) merging alterna-
tive cases due to their presumed irrelevance or rarity.
By using abstraction mechanisms (e.g., (Polyvyanyy
et al., 2008), (Reichert et al., 2012)), modeling ele-
ments are aggregated leading to coarser views that
support comprehensibility. Then, process informa-
tion is omitted for the benefit of abstraction. The loss
of information may include relevant details that influ-
ence process success.

These reasons show that non-modeled but relevant
process details have to be identified. It is not enough
to determine missing aspects, but also to identify their
characteristics that optimize process output. Existing
process improvement approaches do not cover these
requirements, since they are based on pre-known as-
pects. Most of them focus on how to optimally re-
structure already defined modeling elements (e.g., ad-
justment of execution paths). However, it is indeed
possible that important process details are not taken
into account during the modeling stage and thus can-
not be analyzed by such techniques. Examples can be
found in manufacturing environments, where many
tasks are executed manually by process participants.
In industrial projects we face placement scenarios
where process models just prescribe that parts should
be placed on a pallet. Further instructions on how to
place the parts are missing. Observing process execu-
tions reveal that the process outcomes are deviating.
Our research goal is motivated by this experience.

Existing process improvement approaches show
that additional data sources and analysis concepts
have to be taken into account. In manufacturing envi-
ronments, production lines are usually monitored by
collecting image data. According to (Schmidt et al.,
2016), images are a powerful data source, which con-
tain complex information and interrelations, where
business processes can benefit from. Inspired by this,
we aim for the deployment of image mining tech-
niques. In this paper we focus on the implementation
of an approach that extracts relevant process details
from images to enhance process models and guar-
antee process success. We propose to collect image
data of single task executions and to analyze them us-
ing LIME explanation models (Ribeiro et al., 2016).
Based on these results, insufficient modeled details
are identified. Examples on how these details may be
attached to a process model are given. Our work com-
plements previous process improvement approaches.

It supports process designers even after the modeling
phase in their efforts of designing a process success-
oriented model.

2 RELATED WORK

Business processes describe a series of steps that must
be performed to achieve a business goal, such as
manufacturing a specific product. The modeling lan-
guage Business Process Model and Notation (BPMN)
is considered as standard in this field (Chinosi and
Trombetta, 2012). It enables a graphical notation
of business processes by mapping the procedure it-
self and involved process entities (e.g., documents) to
modeling elements. Once modeled, processes are ex-
ecuted according to the model. A widely used ap-
proach to improve process models and executions is
Process Mining. Process mining techniques target the
automatic discovery of information from event logs
which contain one or several process cases (Van der
Aalst et al., 2009). Such techniques are able to iden-
tify, for example, that the execution of process steps
in another order maximizes process success. This in-
sight is then considered for future executions through
redesigning the process model. Since event logs rep-
resent model executions, they contain exclusively in-
formation that was previously modeled.

We distinguish between two types of approaches.
We classify techniques that analyze processes by
known information that is already contained in the
process model as approaches that work with intrinsic
parameters. In contrast, approaches that work with
extrinsic parameters incorporate further data sources
or information not yet included in a model.

There are a lot of different approaches that op-
timize processes using merely intrinsic parameters,
e.g., (Gounaris, 2016), (Polyvyanyy et al., 2008),
(Reichert et al., 2012) (Schonenberg et al., 2008).
Also approaches that consider multiple process per-
spectives to improve process analyzability have to be
mentioned in the context of intrinsic techniques, e.g.,
(Front et al., 2017). According to (Radeschütz et al.,
2008), most business analysis tools do not consider
all relevant data sources or are restricted to a single
data source. This confirms our observation, that there
are only a few approaches based on extrinsic parame-
ters. In (Niedermann et al., 2010) a (semi-) automated
process optimization approach is suggested, which in-
tegrates process and operational data, as well as any
other required data source, e.g., process participant
specific data. Furthermore, we classify approaches
that add information that cannot be expressed by the
process modeling language as extrinsic. The authors
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of (Wiedmann, 2017) propose the BPMN extension
BPM(N)Easy to attach media annotations to model-
ing elements. This provides users additional data
sources that contain information exceeding the ex-
pressive power of a BPMN model.

3 OVERALL CONCEPT

In previous work, we proposed an extrinsic
parameter-based concept to enhance existing
business process models by analyzing image data of
process executions (Fichtner et al., 2020), (Fichtner
et al., 2021). The overall concept consists of five
steps which are briefly described in this section
while the remainder of this paper is dedicated to the
implementation of the Image Analysis step.

It is assumed that there exists a business process
model for a given process. In the Preparation step,
process tasks are identified in the model that have be
executed manually by process participants. Each of
these tasks will be analyzed successively for relevant
process details in the overall procedure. In the Defi-
nition step, the process model is modified regarding
the considered task, such that a video of the task ex-
ecution is recorded or a picture of the initial situation
of the task is taken. The process model is executed
and image data of the task is recorded. After each
execution, the data is labelled according to process
success (Execution and Labelling). The image data
is analyzed by using image mining techniques in the
Image Analysis step. The goal is to identify the re-
gions in all image data that are related to process suc-
cess. The output of this step is the relevant process de-
tail that contains process success related information
and is missing in the process model. To consider the
analyzed process detail in future process executions,
the existing process model is modified. The modifica-
tion can either be structure-related, text-related or the
detail can be integrated as media annotation. In the
Validation step, it is evaluated whether the preceding
process model modification increases process success
or if another task might be responsible for the reduced
process success and has to be considered.

The objective of the approach is to ensure over-
all process success by (i) identifying tasks in a pro-
cess model that were insufficiently modeled and (ii)
extending the model by missing but relevant process
details. In contrast to classical quality assurance ap-
proaches, e.g., (Prykäri et al., 2010), that evaluate
the direct correlation between a task execution and
its output, the presented concept considers the overall
process success. This allows to identify whether pro-
cess failures originate from single tasks, even though

the execution itself seems to be correct. To realize
the Image Analysis step, we identified the following
requirements regarding its output:

First, the analyzed process details should not only
contain information extracted from a single positive
example. Although this may be sufficient for im-
provement, the action scope of process participants
will be severely limited. This can be illustrated by an
example: Consider a task in a process model with the
instruction to place a single object on a pallet. Since
the object position is not explicitly stated, the process
participant place the object anywhere on the pallet.
We assume that there are images showing this scene
and that they are labelled according to overall process
success. We further assume that task success depends
on the position of the object on the pallet, i.e., the
task is successful if the object is placed in a certain
region. One single positive example contains the in-
formation that placing an object at a certain position
leads to success. This is a valuable result, however,
restricts the process participants too much and is im-
practical in real process environments. In addition,
the proposed improvement strongly depends on the
selected example. Single examples always include the
risk of being non-representative. Approaches that are
able to consider the full solution space, i.e., the valid
region to place the object, are needed. The idea of
our approach is to take all positive evaluations and to
generalize them. Thus, out of a concrete placement
information from one positive scenario, a region for
placing the object is determined by collecting all pos-
itive examples. Placing the object anywhere in this
region improves the process outcome. We formulate
this procedure as finding a general conclusion.

Second, the analyzed information must be inter-
pretable for process participants. In the example
above, an analysis of all object positions in positive
labelled images results in a list of coordinates. An in-
struction that contains this list is hard to interpret and
can only hardly be followed. In contrast, a visualiza-
tion where the valid placement region is highlighted
is easier to understand. Therefore the analysis results
have to be transformed in an adequate representation.

4 EXTRACTING RELEVANT
PROCESS DETAILS

In this section we present an implementation for the
Image Analysis step from our overall concept. We fo-
cus on tasks where input specifications are not mod-
eled prescriptively enough. We identify features that
are relevant for the success of process executions. We
aim at finding regions of successful process execu-

How LIME Explanation Models Can Be Used to Extend Business Process Models by Relevant Process Details

529



tions in the feature space and at extracting criteria that
separate them from unsuccessful ones. From these
criteria we derive relevant process details which are
integrated into a business process model. Separating a
feature space in multiple classes is the well researched
issue of classification. If the feature space is known,
classical machine learning approaches can be used to
determine the class boundaries. If the features have to
be extracted automatically, deep learning mechanisms
are used (Popescu and Lucian, 2014). In the context
of images, convolutional neural networks (CNN) have
proven to be a successful technique. CNNs are used
for prediction, while in most cases the focus is on the
final result of a prediction. However, knowing the rea-
son for a prediction and making CNNs explainable
and interpretable is important. Although the parame-
ters that are connected to the decision of a CNN are
difficult to interpret, there are some explanation tech-
niques summarized in (Burkart and Huber, 2021). By
using such an approach, we are able to (i) identify
which features in images are related to successful pro-
cess outcomes and (ii) which values of these features
are required to guarantee process success.

In our implementation approach we use local in-
terpretable model-agnostic explanations (LIME) pro-
vided by (Ribeiro et al., 2016). The concept of LIME
enables the explanation of predictions of any classi-
fier in an interpretable and faithful manner (Ribeiro
et al., 2016). An interpretable model locally around
the prediction is learned and identified. The authors
of LIME propose a method to explain models through
representative individual predictions. The develop-
ment of LIME was motivated by problem statements
related to trust in the context of system decisions. It
is important to understand the reasons of a decision
and to recognize wrong ones in order to avoid mis-
takes (Dzindolet et al., 2003). LIME complements
existing systems allowing users to assess trust even
when a prediction seems to be correct but is made
for the wrong reasons. Non-experts are enabled to
identify irregularities when explanations are present.
These aspects inspired us to use LIME in the context
of Business Process Management. Knowing the rea-
sons behind a prediction can improve business pro-
cesses fundamentally instead of providing temporary
and case-dependent suggestions for improvement. To
provide an interpretable representation, LIME uses
binary vectors indicating the presence or absence of
a contiguous patch of similar pixels. The explana-
tions are visualized by highlighting decision-relevant
parts in the original images. The authors of LIME
published promising experiments and the source code
of their research 1 what supports the use of LIME.

1https://github.com/marcotcr/lime-experiments

Since LIME only provides local explanations, we an-
alyze the resulting images to derive a global explana-
tion. Giving a global understanding of image expla-
nations is an open research problem (Ribeiro et al.,
2016). We present an idea to tackle this issue for our
experiments.

Furthermore, we address the question of (iii) how
the process model can be extended by analyzed in-
formation. We give an example by modifying a pro-
cess model designed with BPMN.io 2. This is an es-
tablished toolkit to view and model BPMN 2.0 dia-
grams. Modeled diagrams can easily be imported and
exported via XML files. To enrich an existing model
with details, we modify this file.

4.1 Implementation

Our implementation consists of three parts: First, a
CNN is trained with labelled image data and LIME is
used to explain the classification model. The outputs
of the explanation step are images highlighting pros
for the prediction. Second, these images are analyzed
regarding different features and a general conclusion
is derived. Third, analysis results are integrated into a
business process model.

To realize the first part, we follow an open source
implementation presenting the usage of LIME 3. We
adopt the basic architecture of the CNN which is suf-
ficient for the complexity of our experimental images.
We adapt the parameters for the expected image size
to our data and reduce the value of the batch size and
epochs for system compatibility reasons.

In the second part, we further analyze the results
after using LIME on positive labelled images to derive
a general conclusion. The LIME results are copies of
the original images but contain only those regions that
explain the decision to the positive class. Irrelevant
parts are colored black. The experiments in the next
section show that the remaining image content is in
most cases an object that is involved in the task. We
define this object as contiguous set of pixels that have
similar colors but that do not have the background
color. A global explanation can be computed based
on local explanations by finding a possibility to com-
pare super-pixels in different images (Ribeiro et al.,
2016). In our experiments, we address this issue by
analyzing the object visible in each LIME result with
respect to a set of features (color, shape, size and po-
sition (centroid)). We define this step as finding a

(last accessed 16 Dec 2021)
2https://bpmn.io/ (last accessed 15 Dec 2021)
3https://github.com/marcellusruben/All things medium/

blob/main/Lime/LIME image class.ipynb
(last accessed 16 Dec 2021)
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Figure 1: The metal injection molding or extrusion process.

general conclusion. For this purpose, the analysis re-
sults are summarized in feature specific sets. There is
one set for each feature containing all possible values,
e.g., a color set contains all object colors that were
analyzed across all LIME results. All features and
their corresponding values are relevant process details
which have to be considered during task execution to
enhance process success.

In the third part, the analyzed process details are
integrated in an existing process model. As stated in
Section 3, textual modification, structural modifica-
tion or extension by media annotations are possible
ways to enhance a task instruction. For textual mod-
ifications, the model is exported as XML file and the
value of the appropriate task attribute is extended by
the process detail. For the structural modification, ad-
ditional tags have to be created. In case of media an-
notations, an image that represents the process detail
is created and attached to the task.

4.2 Experiments and Results

For our experiments, we design a simple process
model representing a part of the metal injection mold-
ing or extrusion process. These processes are similar,
with the latter replacing molding by extrusion. The
left image in Figure 1 shows this process designed
with BPMN.io. The picture on the right illustrates
the task of manually placing parts on a charging plate
in a real process environment 4.

To evaluate the applicability of LIME in the con-
text of Business Process Management, we recorded
image data showing this placement task. For a first
proof of concept, we restrict to simple object shapes
instead of taking parts from industrial environments.
We prepare our images by using object recognition
techniques. This excludes disturbing factors regard-
ing image quality, such as noise or uncontrollable
lighting conditions. We recorded 1000 images per

4https://www.youtube.com/watch?v=QaMdjKE7vT8
(last accessed 17 Dec 2021)

experiment to ensure a sufficiently large database to
compute a representative result. The classification
problem is limited to two classes, resulting in 500
negative examples (unsuccessful process executions)
and 500 positive examples (successful process execu-
tions). Each image shows an input constellation of the
task. We know the criteria that distinguishes positive
and negative labelled image data. In real applications
these criteria are not known but should be analyzed in
the Image Analysis step. The analyzed criteria cor-
respond to our definition of relevant process details.
However, we exploit the knowledge of the criteria in
our experiments to validate the classification results.

An explanation of all LIME parameters can be
found in the official code documentation. We adopt
the default settings for most of them except two pa-
rameters: We restrict the number of labels for which
an explanation is made to two classes (top labels =
2). The parameter (num f eatures) is adjusted for
each experiment. It defines the number of similar
pixel regions to be included in the explanation.

Experiment 1: Color
In a first experiment, we use a simple scenario where
the color of an object is the decisive criterion. Each
image shows one rectangular object on a plane while
images with blue objects are labelled positive and im-
ages with green ones are labelled negative. We show
examples of both classes including their processed
variants after using object recognition techniques in
Figure 2. The object positions are determined ran-
domly and, just as the shape, should not be a relevant
feature. While the decision criteria is obvious for a
human being, a CNN has to be trained in order to rec-
ognize that only one characteristic is important. In
contrast, we will see later that the system is able to ex-
tract relevant features in more complex scenes. This
is an important aspect when it comes to real process
environments. For this experiment we use 800 im-
ages for the training and 200 for the validation of the
CNN. Based on the positive labelled images (cf. Fig-
ure 2b), local explanations are computed using LIME.
Examples of results with num f eatures = 4 can be
seen in Figure 3. The LIME results show that the
CNN’s decision strongly depends on the object and its

(a) Negative example. (b) Positive example.
Figure 2: Image data for experiment 1. Per example: origi-
nal images (left) and their processed images (right).
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Figure 3: LIME results of experiment 1.

characteristics, while the background has no impact.
The other computed results are comparable to those
shown here. In 22% of all cases, the images contain
only the object, while the rest of the image is black-
ened (cf. left images in Figure 3). In the remaining
cases, some small parts of the background are visi-
ble (cf. right images in Figure 3). To derive a general
conclusion, the characteristics of the remaining image
content, i.e., the object, are analyzed. Pixels that do
not have the background color are considered. There-
fore, images where small parts of the background can
be seen are processed as well. The analysis results
in a list of valid positions and sizes as well as single
values for the features shape and color. If these val-
ues are considered during task execution, the process
is successful. For this purpose, the business process
model is extended by this information. Therefore we
edit the XML file describing the process model and
change the name of the task in the respective line. We
show an excerpt of the modified file in Listing 1.

<bpmn:task id=”A1” name=”place parts on charging plate;
Position:{(51, 159), ...};
Size:{(44, 116), ...};
Shape:{’rectangle’};
Color:{’blue’}”>...</bpmn:task>

Listing 1: Modification of the task-related tag.

To support readability, this information can also be
appended as text annotation (cf. Figure 4). How-
ever, this information does not only contain the rel-
evant detail, i.e., the blue color. Furthermore, the po-
sition and size lists are given which are hard to in-
terpret. At this point, the analyzed information has
to be related to the process context. In our experi-
ment, all involved objects are rectangular and of same
size. So the values for the features shape and size may
be neglected. Considering the position list and object
size, it can be derived that all positions on the plane
are valid. Therefore also the position is no decisive
feature. However, all objects are either blue or green
confirming the color as relevant feature. The final re-

Figure 4: Analyzed details added as text annotation.

sult can be interpreted as instruction to place only blue
parts on the charging plate.

Experiment 2: Position and Shape
In a more complex placing experiment, each image
shows four objects. Two of them are rectangular and
the other two are circular. The color of all objects is
the same. The object positions are determined ran-
domly. We exclude intersections and ensure that no
object protrudes beyond the image border. An im-
age is labelled as positive, if at least one circular ob-
ject is positioned in the upper seventh of the scene.
Thus, the features shape and position are the relevant
ones. Figure 5 shows examples leading to unsuccess-
ful and successful process executions. Due to space
limitations we show only the resulting images after
using object recognition techniques. Out of the total
1000 images, 800 are used for training of the CNN
and 200 are used for validation. Results after apply-
ing LIME with parameter num f eatures = 2 are pre-
sented in Figure 6a. The left image shows the result
after applying LIME on the positive labelled image
presented in the left of Figure 5b. In all resulting im-
ages, one circular object is highlighted in the upper
part of the plane. Among them, 29% of the results are
comparable to the left image of Figure 6a. The others
are comparable to the right image and either do not
contain the circular object completely or additionally
show small areas of the background. However, none
of the results contain a rectangular object or both cir-
cular objects. This is an ideal result since all LIME
images represent the condition that one circular object
has to be placed in the upper part of the scene. Besides
a list of positions and sizes, the analysis step outputs
”red” as single color value and ”circle, pentagon” as
shape values. The wrong shape ”pentagon” occurs in
few cases. It results from LIME explanations where
the circular object is not completely visible (cf. right
image in Figure 6a). Since the position list is hard to
interpret, we suggest another representation. We sug-
gest to create an image that shows the region of valid
positions for placing an object (cf. Figure 6b). This
representation allows to efficiently get an overview of
all placement options. The region is computed by
finding the minimal bounding box that encloses all
object position values that are analyzed from LIME

(a) Negative examples. (b) Positive examples.
Figure 5: Image data for experiment 2.
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(a) The resulting images highlight
one circular object.

(b) Valid region
to place objects.

Figure 6: LIME results of positive samples from experiment
2 (left). Bounding box of all valid object positions (right).

results. In this scenario, we suggest to attach this
image to the respective task in the business process
model by using media annotation concepts proposed
by (Wiedmann, 2017). Process participants can view
the attached image during process execution to get a
visual extension of the task instruction. Furthermore,
the task instruction itself is adjusted to include the an-
alyzed and relevant features (color, shape). The XML
file of the process model is modified according to ex-
periment 1.

4.3 Evaluation and Discussion

The experiments confirm that our approach is able to
identify relevant process details from images of pro-
cess tasks. The relevant feature space can be deter-
mined by using CNNs without making any further
assumptions about features. From a Business Pro-
cess Management perspective, this is an important as-
pect. Since relevant details and features are usually
not known in advance (cf. Section 1), assumptions
regarding the feature space cannot be made. The con-
cept of LIME is able to identify and visualize regions
in the computed feature space that are relevant for
successful process execution. In our experiments, the
images created by LIME highlight single objects that
take part in the scene. Considering the criterion that
distinguishes negative from positive labelled images
per use case, LIME produces expected and correct re-
sults in both experiments. The LIME results explain
that the relevant information regarding process suc-
cess is somehow related to the highlighted object. The
rest of the image is irrelevant for the decision of the
CNN. In the second experiment, pre-filtering to rel-
evant content is essential to derive a general conclu-
sion. It indicates that the rectangular objects are not
relevant for process success. It further explains that
only one circular object is relevant for the CNN’s de-
cision for the positive class. By analyzing the features
of this remaining object across all LIME results, we
are able to compute a general conclusion. Finding
such a conclusion meets an important in the context

of Business Process Management. As explained at the
end of Section 3, a local explanation based on a sin-
gle positive example is not sufficient as it restricts the
scope of action of a process participant unnecessarily
far.

In the experiments, we demonstrate the applica-
bility of the concept in simple scenarios and with pre-
processed image data using object recognition tech-
niques. In real process environments, scenes can be-
come much more complex. Although the presented
approach also works with more complex input data,
we propose to optimize it for more complex scenes.
To meet associated requirements, the presented image
analysis technique should be interchanged with more
powerful image analysis techniques. Complex images
require robust techniques that are able to explore large
feature spaces. Furthermore, derived general conclu-
sions have to be optimized in case of more complex
scenes. To automate this issue the implementation has
to be extended as follows. The general conclusion
contains lists of object features and a set of values per
feature. Each set has to be checked whether it con-
tains all possible values that can occur in the process
task. If this is true, the related object feature is not
a relevant detail. For example, in experiment 1 the
object shape is not a relevant feature since all objects
involved in the process task are rectangular. Finally, a
sufficient number of image data for training and val-
idating the CNN may not be available in real process
environments. In the case of limited data, we propose
to integrate data augmentation techniques into the im-
plementation.

5 CONCLUSION AND FUTURE
WORK

In this work, we present an approach to identify miss-
ing process details of business process models that are
relevant for an overall process success. In the pro-
posed implementation, a CNN is trained with image
data showing task scenes. The images are recorded
during task execution and are labelled according to
overall process success. We use LIME to explain the
prediction of the CNN for samples of successful pro-
cess executions. The results are images containing
prediction-relevant regions. Across all results, these
regions are analyzed using image analysis techniques
to derive a general conclusion. It contains relevant
features and values to achieve process success. This
information is integrated into the process model. We
evaluate our method with experiments using image
data showing simplified scenarios from manufactur-
ing process environments. Our experiments confirm
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that LIME and image mining techniques can be used
to improve business processes. The results show that
our approach is able to identify relevant process de-
tails. The process of metal injection molding or ex-
trusion is taken as an example from real-world envi-
ronments. The presented concept is applicable for a
large set of similar processes that involve process par-
ticipants in pick-and-place tasks. However, its flexi-
bility allows to extend its scope of application to other
tasks.

Future work should focus on using more power-
ful image mining techniques that increase the robust-
ness and accuracy of the Image Analysis step. We
aim to extend our experiments with more complex
image data from real process environments. We fur-
ther plan to evaluate the proposed ways of integrating
process details in existing process models in a user
study. This includes the investigation of how a certain
feature must be represented in order to be interpreted
correctly and efficiently by process participants.
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