Booch, G. (1996). Object solutions: managing the object-
oriented project. Addison-Wesley.
Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). SMOTE: synthetic minority over-
sampling technique. Journal Of Artificial Intelligence
Research, 16:321–357.
Cook, C., Heath, F., and Thompson, R. L. (2000). A
meta-analysis of response rates in web-or internet-
based surveys. Educational and psychological mea-
surement, 60(6):821–836.
Di Bella, E., Sillitti, A., and Succi, G. (2013). A multivari-
ate classification of open source developers. Informa-
tion Sciences, 221:72–83.
dos Santos, A. L., de A. Souza, M. R., Oliveira, J., and
Figueiredo, E. (2018). Mining software repositories
to identify library experts. In 7th SBCARS, pages 83–
91, Sao Carlos, Brazil. ACM.
Douzas, G., Bac¸
˜
ao, F., and Last, F. (2018). Improving
imbalanced learning through a heuristic oversampling
method based on k-means and SMOTE. Information
Science, 465:1–20.
Dudjak, M. and Martinovi
´
c, G. (2020). In-depth perfor-
mance analysis of SMOTE-based oversampling algo-
rithms in binary classification. International Jour-
nal of Electrical and Computer Engineering Systems,
11(1):13–23.
Greene, G. J. and Fischer, B. (2016). CVExplorer: Iden-
tifying candidate developers by mining and exploring
their open source contributions. In 31st IEEE/ACM
ASE, pages 804–809, Singapore, Singapore. ACM.
Hauff, C. and Gousios, G. (2015). Matching GitHub de-
veloper profiles to job advertisements. In 12th MSR,
pages 362–366, Florence, Italy. IEEE.
Hooker, G. and Mentch, L. (2019). Please stop per-
muting features: An explanation and alternatives.
arXiv:1905.03151.
Izquierdo-Cortazar, D., Robles, G., Ortega, F., and
Gonz
´
alez-Barahona, J. M. (2009). Using software
archaeology to measure knowledge loss in software
projects due to developer turnover. In 42st HICSS,
pages 1–10, Waikoloa, USA. IEEE.
Kagdi, H. H., Hammad, M., and Maletic, J. I. (2008). Who
can help me with this source code change? In 24th
ICSM, pages 157–166, Beijing, China. IEEE Com-
puter Society.
Kruchten, P. (1999). The software architect. In 1st WICSA,
volume 140 of IFIP Conference Proceedings, pages
565–584, San Antonio, USA. Kluwer.
Lars Buitinck, e. (2013). API design for machine learning
software: experiences from the scikit-learn project. In
ECML PKDD Workshop: Languages for Data Min-
ing and Machine Learning, pages 108–122, Prague,
Czech Republic. Springer.
Lundberg, S. M. and Lee, S. (2017). A unified approach to
interpreting model predictions. In 30th NIPS, pages
4765–4774, Long Beach, USA.
Mockus, A. and Herbsleb, J. D. (2002). Expertise browser:
a quantitative approach to identifying expertise. In
24th ICSE, pages 503–512, Orlando, USA. ACM.
Moscato, V., Picariello, A., and Sperl
`
ı, G. (2021). A
benchmark of machine learning approaches for credit
score prediction. Expert Systems with Applications,
165:113986.
Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K.,
and Ye, Y. (2002). Evolution patterns of open-source
software systems and communities. In 5th IWPSE @
24th ICSE, pages 76–85, Orlando, USA. ACM.
Perez, Q., Le Borgne, A., Urtado, C., and Vauttier, S.
(2021). Towards Profiling Runtime Architecture Code
Contributors in Software Projects. In 16th ENASE,
pages 429–436, Online.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should I trust you?”: Explaining the predictions of any
classifier. In 22nd SIGKDD, pages 1135–1144, San
Francisco, USA. ACM.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). Anchors:
High-precision model-agnostic explanations. In 32nd
AAAI, pages 1527–1535, New Orleans, USA. AAAI
Press.
Schuler, D. and Zimmermann, T. (2008). Mining usage ex-
pertise from version archives. In 5th MSR, pages 121–
124, Leipzig, Germany. ACM.
Shapley, L. S. (1953). A value for n-person games. Contri-
butions to the Theory of Games, 2(28):307–317.
Sindhgatta, R. (2008). Identifying domain expertise of de-
velopers from source code. In 14th SIGKDD KDD,
pages 981–989, Las Vegas, USA. ACM.
Spadini, D., Aniche, M., and Bacchelli, A. (2018). Py-
Driller: Python framework for mining software repos-
itories. In 26th ESEC/FSE, pages 908–911, New York,
USA. ACM Press.
Teyton, C., Falleri, J., Morandat, F., and Blanc, X. (2013).
Find your library experts. In 20th WCRE, pages 202–
211, Koblenz, Germany. IEEE.
Teyton, C., Palyart, M., Falleri, J.-R., Morandat, F., and
Blanc, X. (2014). Automatic extraction of developer
expertise. In 18th EASE, pages 1–10, London, UK.
ACM.
Tse, A. C. (1998). Comparing response rate, response speed
and response quality of two methods of sending ques-
tionnaires: e-mail vs. mail. Market Research Society
Journal, 40(4):1–12.
Zheng, A. and Casari, A. (2018). Feature engineering for
machine learning: principles and techniques for data
scientists. O’Reilly.
ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering
452