REFERENCES
Besenczi, R., B
´
atfai, N., Jeszenszky, P., Major, R., Monori,
F., and Isp
´
any, M. (2021). Large-scale simulation
of traffic flow using markov model. PLOS ONE,
16(2):e0246062.
Braga, M., Santos, M. Y., and Moreira, A. (2014). New
Perspectives in Information Systems and Technolo-
gies, chapter Integrating Public Transportation Data:
Creation and Editing of GTFS Data, pages 53–62.
Springer.
Fortin, P., Morency, C., and Tr
´
epanier, M. (2016). Inno-
vative gtfs data application for transit network analy-
sis using a graph-oriented method. Journal of Public
Transportation, 19(4).
Gallotti, R. and Barthelemy, M. (2015). The multilayer tem-
poral network of public transport in great britain. Sci-
entific Data, 2:140056.
Hansson, J., Pettersson, F., Svensson, H., and Wretstrand,
A. (2019). Preferences in regional public transport: a
literature review. European Transport Research Re-
view, 11:38.
Harrelson, C. (2021). GTFS Reference. Google.
https://developers.google.com/transit/gtfs.
Jiang, B. (2007). A topological pattern of urban street net-
works: Universality and peculiarity. Physica A: Sta-
tistical Mechanics and its Applications, 384:647–655.
Real city map topology, traffic information (80scale-
free.
Kocsis, G. and Varga, I. (2021a). Github page of the project.
https://github.com/kocsisger/gtfs2net.
Kocsis, G. and Varga, I. (2021b). Github page of the used
gtfs feeds. https://github.com/kocsisger/gtfs.
Kujala, R., Weckstr
¨
om, C., Darst, R. K., Mladenovi
´
c,
M. N., and Saram
¨
aki, J. (2018a). A collection of pub-
lic transport network data sets for 25 cities. Scientific
Data, 5:180089. GTFS network collections of cities,.
Kujala, R., Weckstr
¨
om, C., Darst, R. K., Mladenovi
´
c,
M. N., and Saram
¨
aki, J. (2018b). A collection of pub-
lic transport network data sets for 25 cities. Scientific
Data, 5(180089).
L
¨
ammer, S., Gehlsen, B., and Helbing, D. (2006). Scaling
laws in the spatial structure of urban road networks.
Physica A: Statistical Mechanics and its Applications,
363:89–95. 20 german cities road network, distribu-
tion of cars on roads.
Ogami, Y. (2021). Fast algorithms for particle searching
and positioning by cell registration and area compar-
ison. Trends in Computer Science and Information
Technology, 007-016(6(1)).
Porta, S., Crucitti, P., and Latora, V. (2006). The network
analysis of urban streets: A dual approach. Physica A,
369:853–866. Complex network of roads of 6 cities,
node-edge swapping representation, maps, P(k), acc,
avk, apl.
Rosetta Code Community (2021). Haversine formula.
https://rosettacode.org/wiki/Haversine formula.
Sienkiewicz, J. and Hołyst, J. A. (2005). Statistical analysis
of 22 public transport networks in poland. Physical
Review E, 72:046127.
von Ferber, C., Holovatch, T., Holovatch, Y., and
Palchykov, V. (2007). Network harness: Metropolis
public transport. Physica A: Statistical Mechanics and
its Applications, 380:585–591.
Vuurstaek, J., Cich, G., Knapen, L., Ectors, W., Yasar, A.-
U.-H., Bellemans, T., and Janssens, D. (2020). Gtfs
bus stop mapping to the osm network. Future Gener-
ation Computer Systems, 110:393–406.
Wessel, N. and Farber, S. (2019). On the accuracy of
schedule-based gtfs for measuring accessibility. Jour-
nal of Transport and Land Use, 12(1):475–500.
Wong, J. C. (2013). Use of the general transit feed speci-
fication (GTFS) in transit performance measurement.
PhD thesis, Georgia Institute of Technology.
Extracting Mass Transportation Networks from General Transit Feed Specification Datasets
91