Delahaye, M. and Du Bousquet, L. (2013). A comparison
of mutation analysis tools for java. In 2013 13th Inter-
national Conference on Quality Software, pages 187–
195. IEEE.
Dubrova, E. (2013). Fault-tolerant design. Springer.
Elish, K. O. and Elish, M. O. (2008). Predicting defect-
prone software modules using support vector ma-
chines. Journal of Systems and Software, 81(5):649–
660.
Febrero, F., Calero, C., and Moraga, M.
´
A. (2016). Software
reliability modeling based on iso/iec square. Informa-
tion and Software Technology, 70:18–29.
Fenton, N. and Bieman, J. (2014). Software metrics: a rig-
orous and practical approach. CRC press.
Gondra, I. (2008). Applying machine learning to software
fault-proneness prediction. Journal of Systems and
Software, 81(2):186–195.
Gyimothy, T., Ferenc, R., and Siket, I. (2005). Empirical
validation of object-oriented metrics on open source
software for fault prediction. IEEE Transactions on
Software engineering, 31(10):897–910.
He, P., Li, B., Liu, X., Chen, J., and Ma, Y. (2015). An
empirical study on software defect prediction with a
simplified metric set. Information and Software Tech-
nology, 59:170–190.
Jabangwe, R., B
¨
orstler, J.,
ˇ
Smite, D., and Wohlin, C.
(2015). Empirical evidence on the link between
object-oriented measures and external quality at-
tributes: a systematic literature review. Empirical
Software Engineering, 20(3):640–693.
Kalaivani, N. and Beena, R. (2018). Overview of software
defect prediction using machine learning algorithms.
International Journal of Pure and Applied Mathemat-
ics, 118(20):3863–3873.
Karimian, F. and Babamir, S. (2017). Evaluation of classi-
fiers in software fault-proneness prediction. Journal
of AI and Data Mining, 5(2):149–167.
Kaur, A. and Kaur, I. (2018). An empirical evaluation of
classification algorithms for fault prediction in open
source projects. Journal of King Saud University-
Computer and Information Sciences, 30(1):2–17.
Koru, A. G. and Liu, H. (2005). Building effective
defect-prediction models in practice. IEEE software,
22(6):23–29.
Kumar, L., Misra, S., and Rath, S. K. (2017). An empirical
analysis of the effectiveness of software metrics and
fault prediction model for identifying faulty classes.
Computer Standards & Interfaces, 53:1–32.
Kumar, S. and Rathore, S. S. (2018). Software Fault Pre-
diction: A Road Map. Springer.
Lomio, F., Moreschini, S., and Lenarduzzi, V. (2021). Fault
prediction based on software metrics and sonarqube
rules. machine or deep learning? arXiv preprint
arXiv:2103.11321.
Lyu, M. R. et al. (1996). Handbook of software reliabil-
ity engineering, volume 222. IEEE computer society
press CA.
Malhotra, R. (2015). A systematic review of machine learn-
ing techniques for software fault prediction. Applied
Soft Computing, 27:504–518.
Menzies, T., DiStefano, J., Orrego, A., and Chapman, R.
(2004). Assessing predictors of software defects. In
Proc. Workshop Predictive Software Models.
Mili, A., Jaoua, A., Frias, M., and Helali, R. G. M. (2014).
Semantic metrics for software products. Innovations
in Systems and Software Engineering, 10(3):203–217.
Nakai, H., Tsuda, N., Honda, K., Washizaki, H., and
Fukazawa, Y. (2016). Initial framework for software
quality evaluation based on iso/iec 25022 and iso/iec
25023. In 2016 IEEE International Conference on
Software Quality, Reliability and Security Companion
(QRS-C), pages 410–411. IEEE.
Olague, H. M., Etzkorn, L. H., Gholston, S., and Quat-
tlebaum, S. (2007). Empirical validation of three
software metrics suites to predict fault-proneness of
object-oriented classes developed using highly itera-
tive or agile software development processes. IEEE
Transactions on software Engineering, 33(6):402–
419.
Prasad, M., Florence, L., and Arya, A. (2015). A study
on software metrics based software defect prediction
using data mining and machine learning techniques.
International Journal of Database Theory and Appli-
cation, 8(3):179–190.
Radjenovi
´
c, D., Heri
ˇ
cko, M., Torkar, R., and
ˇ
Zivkovi
ˇ
c, A.
(2013). Software fault prediction metrics: A system-
atic literature review. Information and software tech-
nology, 55(8):1397–1418.
Rathore, S. S. and Kumar, S. (2017). An empirical
study of some software fault prediction techniques
for the number of faults prediction. Soft Computing,
21(24):7417–7434.
Reddivari, S. and Raman, J. (2019). Software quality pre-
diction: An investigation based on machine learning.
In 2019 IEEE 20th International Conference on Infor-
mation Reuse and Integration for Data Science (IRI),
pages 115–122. IEEE.
Shannon, C. (2001). A mathematical theory of communica-
tion. ACM SIGMOBILE mobile computing and com-
munications review, 5:3–55.
Singh, A., Bhatia, R., and Singhrova, A. (2018). Taxonomy
of machine learning algorithms in software fault pre-
diction using object oriented metrics. Procedia com-
puter science, 132:993–1001.
Turabieh, H., Mafarja, M., and Li, X. (2019). Iterated fea-
ture selection algorithms with layered recurrent neural
network for software fault prediction. Expert Systems
with Applications, 122:27–42.
Verma, D. K. and Kumar, S. (2017). Prediction of defect
density for open source software using repository met-
rics. J. Web Eng., 16(3&4):294–311.
Zhou, Y., Xu, B., and Leung, H. (2010). On the ability
of complexity metrics to predict fault-prone classes in
object-oriented systems. Journal of Systems and Soft-
ware, 83(4):660–674.
ENASE 2022 - 17th International Conference on Evaluation of Novel Approaches to Software Engineering
220