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Abstract: Dataset Shifts (DSS) are known to cause poor predictive performance in supervised machine learning tasks.
We present a challenging binary classification task for a real-world use case of product failure prediction. The
target is to predict whether a product, e. g., a truck may fail during the warranty period. However, building
a satisfactory classifier is difficult, because the characteristics of underlying training data entail two kinds
of DSS. First, the distribution of product configurations may change over time, leading to a covariate shift.
Second, products gradually fail at different points in time, so that the labels in training data may change,
which may a concept shift. Further, both DSS show a trade-off relationship, i. e., addressing one of them may
imply negative impacts on the other one. We discuss the results of an experimental study to investigate how
different approaches to addressing DSS perform when they are faced with both a covariate and a concept shift.
Thereby, we prove that existing approaches, e. g., incremental learning and windowing, especially suffer from
the trade-off between both DSS. Nevertheless, we come up with a solution for a data-driven classifier, that
yields better results than a baseline solution that does not address DSS.

1 INTRODUCTION

Dataset Shifts (DSS) (Quiñonero-Candela et al.,
2008) relate to the phenomenon that properties
and statistical distributions of data change over
time (Moreno-Torres et al., 2012). They are com-
mon in many real-world application scenarios of non-
stationary environments and their study is an active
area of research (Ditzler et al., 2015; Bang et al.,
2019; Dharani Y. et al., 2019; Losing et al., 2018;
Elwell and Polikar, 2011). Literature discusses vari-
ous types of DSS (Moreno-Torres et al., 2012). Es-
pecially two types of DSS occur more frequently in
practice than others and are therefore of particular rel-
evance: a covariate shift (Dharani Y. et al., 2019) and
a concept shift (Elwell and Polikar, 2011). A covari-
ate shift is a shift in the distribution of feature values
between a training dataset T and a test dataset T ′, so
that single class patterns occur with different frequen-
cies. A concept shift constitutes a change in the deci-
sion boundaries of individual class patterns. Usually,
DSS cause poor prediction performance in supervised
machine learning tasks (Kull and Flach, 2014).

Related work proposes approaches such as incre-
mental learning (Losing et al., 2018) and window-
ing (Bifet and Gavaldà, 2007) to address either co-
variate or concept shifts. Moreno-Torres et al. high-
light that no adequate solution exists that addresses
combinations of both kinds of DSS, since such com-
binations seem to be rare in practice (Moreno-Torres
et al., 2012). However, data of many real-world use
cases, e. g., from product design (Nalbach et al., 2018)
or medical diagnoses (Khan and Usman, 2015; Maitı́n
et al., 2020), often suffer from both DSS. Here, such
combined DSS make it difficult to build classifiers for
improving product design and automating medical di-
agnoses. So far, no studies investigate how different
approaches for dealing with DSS perform when con-
fronted with both covariate shifts and concept shifts.

In this paper, we analyze approaches to deal with
combined dataset shifts. To this end, we have devel-
oped a real-world use case together with a large global
truck manufacturer. The manufacturer finds that an
increased number of trucks suddenly fail during the
warranty period. A root cause analysis shows that the
targeted assembly of more robust product components
prevents these failures. Accordingly, the truck manu-
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facturer plans to selectively assemble robust parts in
those trucks that are likely to fail. This can be framed
as a supervised machine learning task for product fail-
ure prediction to avoid future failures.

For this task, we collect a training dataset T , rep-
resenting trucks that are already in customer use. The
feature set of T corresponds to the truck configu-
rations, while a label indicates whether a truck has
failed during the warranty period. The goal is to
learn a binary classifier in order to apply it on a test
dataset T ′. This test set T ′ represents new trucks
and their configurations that will soon be produced.
The classifier predicts which of these new trucks are
also likely to fail with the less robust components.
The manufacturer then assembles more robust com-
ponents into these trucks as a preventive measure.
Learning the binary classifier is complex because the
use case data characteristics exhibit two types of DSS.
Covariate Shift (CS1): The training data T consists
of 3,000 features that represent the various compo-
nents assembled in each truck. However, the truck
manufacturer produces a large number of truck vari-
ants whose components and configurations change
over time. This induces a covariate shift (CS1).
Concept Shift (CS2): Trucks may fail at different
points in time during their use phase. Hence, the la-
bels of trucks that eventually fail gradually shift from
”nonfailed” to ”failed” over time, i. e., one truck af-
ter the other. This leads to a concept shift (CS2).

In this paper, we investigate how to build a clas-
sifier with satisfactory prediction performance mea-
sured as True-Positive-Rate (TPR) under the influence
of these two types of dataset shifts in combination.
We thereby make the following main contributions:

• We shed light into real-world data characteristics
and causes of combined DSS in a use case of
product failure prediction. We propose four meta-
features that clearly analyze the extents of covari-
ate (CS1) and concept shifts (CS2) in these data.

• We show that existing approaches to Data Stream
Mining that handle DSS, e. g., incremental learn-
ing and windowing, suffer from a trade-off re-
lationship between covariate (CS1) and concept
shifts (CS2). With our meta-features, it is pos-
sible for the first time to measurably analyze the
trade-off behavior of this combined dataset shift.

• We come up with a classifier that yields better re-
sults than a baseline that does not explicitly ad-
dress DSS. This classifier finally increases the
True-Positive-Rate and leads to a significant re-
duction of warranty claim costs by∼ 13%-points.
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Figure 1: Overview on datasets for training and testing pos-
sible classifiers that can predict product failures of trucks.

• As basis for our evaluation, we have generated
synthetic datasets. We provide these datasets in
a GitHub repository1 to increase reproducibility.

Our paper is structured as follows: in Section 2,
we describe the use case of predicting product failures
and the two kinds of DSS. We discuss related work
in Section 3. Section 4 then illustrates the design of
our experimental study. In Section 5, we discuss the
evaluation results and come up with the classifier that
outperforms the baseline. We conclude in Section 6.

2 DATASET SHIFTS IN PRODUCT
FAILURE PREDICTION TASKS

In this section, we present our use case for product
failure prediction (2.1), describe the underlying data
characteristics (2.2), and how this leads to a covariate
and a concept shift (2.3). Last, we discuss in which
other domains both kinds of DSS occur together (2.4).

2.1 Real-world Use Case from Industry:
Prediction of Product Failures

A truck manufacturer provided us with data from a
real-world use case. The truck manufacturer noticed
that powertrain failures happened more frequently
since the production year 2015. Usually, compo-
nents from the powertrain, e. g., injection pumps, tur-
bocharger, gears, etc. fail due to higher loads. To
therefore avoid possible real-world hints and to in-
crease readability, this paper considers an unspecified
component from the powertrain. In order to tackle this
quality problem, the truck manufacturer substituted
this component with another more robust one. We
call the initial, less robust part A and its more robust

1https://github.com/MarcoS89-dev/Combined-DataSet
Shifts-in-ProductFailurePrediction
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variant B . Starting from 01/01/2017, B is ready for
assembly in trucks and prevents particular powertrain
damages in the later use phase of trucks. However,
due to supply bottlenecks, the availability of part B is
restricted and can only be assembled in a maximum
of 50% of all trucks. Figure 1 shows the correspond-
ing production time line for the use case and which
data we used as training (T ) and test dataset (T ′).

Quality engineers found that individual truck con-
figurations somehow influence the proneness to pow-
ertrain damages. The idea is to determine which con-
figurations are more prone to this damage. So, these
trucks are then assembled with the more robust part
B . Otherwise, part A and B are assembled randomly.

The manufacturer asked data scientists to collect
historical training data and to learn a classifier that
can predict truck failures. On 01/01/2017, the data
scientists built a classifier using the collected training
dataset T of trucks produced in 2015 and 2016 (see
Figure 1). They then applied this classifier to the new
trucks produced in 2017 to decide whether to assem-
ble part A or B in these new trucks. Some years later,
in 2022, the labels in the test data T ′ have changed
and now show stable class patterns and fixed deci-
sion boundaries. So, the data scientists finally eval-
uated their classifier in this year again. The evalua-
tion shows a True-Positive-Rate (TPR) of only 55.9%.
This is an increment of 5.90%-points compared to the
random assembly of A and B . However, this 55.9%
is a poor predictive performance and not satisfactory
at all. The data scientists assume that it is due to DSS.
Research goal. This use case provides the starting
point for our study. We investigate different well-
known approaches from Data Stream Mining that ad-
dress DSS. The ultimate goal is to determine if it is
possible to build a classifier that outperforms the base-
line with 55.9% TPR. Please note that the final TPR
is only known when enough time has passed. This
means in our case, when each truck from the test data
has completed its warranty period. Thus, we are look-
ing from today’s perspective, i. e., from 2022, into the
past. With this retrograde analysis, we examine if it is
possible to learn a better classifier with different com-
binations of sampling techniques and algorithms.

2.2 Data Characteristics

Table 1 shows the attributes of T and T ′: truck iden-
tification number, a class label and the feature space
X . The label of a sample is either ”failed” as positive
class c+ or ”nonfailed” as negative class c−. More-
over, T and T ′ include only trucks with part A , be-
cause only these may fail due to the particular failure.

Table 1: Exemplary structure of datasets T and T ′.
Truck-
ID

Class
label

x1:
Engine

x2:
Engine

xη:
Other

(c+ / c−) ABC XYZ part

1 failed 1 0 0
2 nonfailed 0 1 0
3 nonfailed 1 0 1
... ... ... ... ...

Note that the manufacturer only gets data of failed
trucks if the customer brings them to a workshop that
is under contract with the manufacturer. Within the
36-month warranty period, the customer is restricted
to bring his or her trucks to those contracted work-
shops to claim warranty obligations. However, after
the warranty period has expired, the customer is free
to choose another workshop. In this case, we cannot
capture any more labels for trucks out of warranty.

The feature space X is one-hot encoded and con-
tains around 3,000 disjunctive features. So, X con-
sists of η binary variables x1 to xη. Each variable rep-
resents one particular truck equipment, e. g., a certain
type of an engine. The binary values 1 and 0 describe
whether a respective equipment is present in a truck
or not. Example: truck 1 and truck 3 in Table 1 are
equipped with an ABC engine, whereas truck 2 has an
XYZ engine. Each truck consists on average of about
186 binary 1’s in X and about 2,814 binary 0’s. The
number of 1’s per truck ranges from 131 to 262.
Meta-features. Table 2 shows the four relevant meta-
features: c+ ratio, �MIS, V S and V S c+.

With our proposed meta-features, we analyze the
datasets T and T ′ at two time points: on 01/01/2017
and on 01/01/2022. We use these two different data
states in Section 2.3 to illustrate the DSS of our
datasets. The training set T contains 80,948 trucks
that have been produced in 2015 (T2015) or 2016
(T2016). On 01/01/2017, only 97 of them have already
failed and thus get the positive class c+ as label. As
a result, the c+ ratio, which represents the share of
failed trucks to all trucks, is 0.12%. The Months-In-
Service (MIS) (see Table 2) is the operating time of
a truck and correlates with the c+ ratio because the
older a truck, the higher its risk of failure.

The trucks in T and T ′ may differ considerably.
We have identified 489 key features that describe a
truck in its basic characteristics. These 489 key fea-
tures split into 11 non-overlapping feature domains,
e. g., engine (29 key features), gearbox (30 key fea-
tures), and axle (41 key features). In each feature
domain, we compare the distributions of key features
between T and T ′ to develop the meta-feature Truck
Similarity V S as a similarity indicator. Truck Similar-
ity V S is the mean of the frequency differences across
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Table 2: View on T and T ′ on 01/01/2017 and 01/01/2022 with number of trucks (N), failures (c+) and the meta-features.

Set N c+ c+ ratio �MIS V S V S c+

Data Status on 01/01/2017
T 80,948 97 0.12% 10.28 79.67% 49.95%
T2015 38,659 82 0.21% 16.63 76.73% 49.06%
T2016 42,289 15 0.04% 5.29 82.28% 57.40%

Data Status on 01/01/2022
T 80,948 7,245 8.95% 71.89 79.67% 65.14%
T ′ 42,260 4,585 10,85% 52.11 - -

Table 3: Exemplary comparison of the proportions of key
features within the engine domain between T and T ′.

Key Features Proportions in... DifferenceT T ′

H290, 10.8l 17% 12% 5%
H310, 12.9l - 25% 25%
H460, 15.7l 35% 20% 15%
M130, 5.2l 7% 7% 0%
M175, 7.8l 4% - 4%
... ... ... ...

the respective key features. For instance, a particular
engine may be assembled more often or less in T than
in T ′, leading to a shift of the frequencies of this par-
ticular feature value. This shift in feature frequencies
and the resulting differences are illustrated in Table 3.

Finally the value of meta-feature V S (see Table 2)
is the result from 100%−�di f f erences of all eleven
unweighted feature domains. In order to measure the
truck similarity only between failed trucks from the
training (T ) and the test (T ′) datasets, we developed
V S c+ as the Truck Similarity of Class c+. The calcu-
lation of V S c+ is the same as for V S , except that we
only use the distributions of failed trucks (c+).

2.3 Dataset Shifts

The characteristics of our use case and of its data es-
tablish a non-stationary environment that entails two
kinds of dataset shifts for product failure predictions.
For the mathematical description of the DSS we de-
note x as the input variables, i. e. features, and y as the
target class variable (Moreno-Torres et al., 2012).
Covariate Shift (CS1): Ptrain(y|x) = Ptest(y|x) and
Ptrain(x) 6= Ptest(x). The functional relationship f (x)
between training and test data remains the same over
time. However, the distributions within the feature
sets x of training and test data are different. Con-
sequently, important class patterns in the test data
may be underrepresented in the training data and vice
versa. This may usually result in a degradation of the

classification performance, since relevant class pat-
terns in the test dataset cannot be entirely learned by
a classification algorithm from the training dataset.

CS1 occurs in our use case because the configu-
rations of trucks especially vary for different areas of
application, e. g., construction site or transport trucks.
Over individual quarters, different customers order
different fleets of trucks, which can vary significantly
in terms of their areas of application and thus in their
configurations. Therefore, the trucks in the training
dataset T may differ from those in the test dataset T ′.
This can be seen by the meta-feature V S reported in
Table 2. The value of ˜80% indicates that the dis-
tribution of feature values in T and T ′ differ by at
least 20%. Even worse, the similarity of failed trucks
(V S c+) is only about 50%. This difference in the dis-
tribution of features constitutes a covariate shift.
Concept Shift (CS2): Ptrain(y|x) 6= Ptest(y|x) and
Ptrain(x) = Ptest(x). The distributions of features re-
main the same between training and test data, but a
shift in the mapping function f (x) occurs. This may
usually result in a degradation of the classification
performance, since the descriptions of the class pat-
terns change over time, although the feature space X
remains the same. This means that the patterns in the
training data are described either by different features
or value ranges than the actual patterns in the test data.

CS2 occurs in our use case because each sample
of T is initially an element of c− (”nonfailed”) and
has a chance to eventually become an element of c+

(”failed”). On 01/01/2017, the average MIS of the
80,948 trucks in training data T is about 10 months,
and 97 of them failed so far. Until 01/01/2022, when
the average MIS is about 72 months, the number of
failed trucks increases to 7,245. So, the class label of
7,148 trucks has shifted from c− to c+, so that the c+

ratio increases from 0.12% to 8.95%. This causes a
concept shift, as the decision boundaries of class pat-
terns may change with each label shift.
Combination of both Shifts CS1 and CS2:
Ptrain(y|x) 6= Ptest(y|x) and Ptrain(x) 6= Ptest(x).
Moreno et al. currently consider this combined DSS
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as impossible to solve. Further, they consider that
this DSS is not discussed in literature because it
rarely occurs in practice (Moreno-Torres et al., 2012).
However, in real-world applications these DSS are
more common than literature assumes, and thus we
specifically focus on them in this paper. In the next
section (2.4), we discuss other domains where both
DSS occur, highlighting the importance of this topic.
Trade-off Relationship between CS1 and CS2: To
illustrate the interdependence between the covariate
and the concept shift in our use case, we compare in
Table 2 two subsets of the training dataset T : older
trucks produced in 2015 (T2015) and newer trucks
from 2016 (T2016). On 01/01/2017, older trucks from
2015 have 82 failures and a c+ ratio of 0.21%. Newer
trucks from 2016 however have only 15 failures and
a lower c+ ratio of 0.04%. Additionally, trucks pro-
duced in 2016 have values of V S and V S c+ that are
with 82.28% and 57.40% about 7%-points higher than
those from 2015. This indicates that the older and
thus less similar the trucks are, the more significant
the negative effect of the covariate shift (CS1) and the
lower the negative effect of the concept shift (CS2).
Newer trucks show exactly the opposite behavior, i. e.,
they are rather affected by CS2 than by CS1.

2.4 Dataset Shifts in Other Domains

The characteristics of DSS are common in manufac-
turing data (Bang et al., 2019). We have found other
application areas in the literature in which both DSS
occur together. This includes domains such as prod-
uct design (Nalbach et al., 2018) and medical diag-
noses (Khan and Usman, 2015; Maitı́n et al., 2020).

In the area of product design, Nalbach et al. (Nal-
bach et al., 2018) have developed a system called Pre-
ventive Quality Assurance (PreQA). This system uses
machine learning to learn from the products returned
by customers in order to improve the design of new
products. During the development of new products,
the product designer receives a forecast from PreQA
that indicates the likelihood if the planned product de-
sign may later fail during customer use. To this end,
PreQA refers to historical failures and correlates them
with the new product design based on similar feature
subsets. In analogy to our use case, PreQA also takes
covariate shifts (CS1) into account by selecting sim-
ilar product designs. Moreover, concept shifts (CS2)
have a negative impact on the predictive accuracy of
the classifiers in this area as well. This is because the
training data of PreQA consists of products in cus-
tomer use. These products likewise gradually fail over
time, which may thus change the concepts in the data.

Both types of dataset shifts also occur in the de-
tection of neurological diseases, as exemplified by
Alzheimer’s (Khan and Usman, 2015) and Parkin-
son’s (Maitı́n et al., 2020) diseases. For instance,
people with certain characteristics, such as old age
or diabetes, are more susceptible to Alzheimer’s dis-
ease. The distribution of these characteristics that pre-
dispose Alzheimer’s disease change over time among
people. For example, more people get diabetes to-
day than a few decades before because they con-
sume more industrial sugar. This leads to a shift in
the covariates (CS1). Furthermore, given that the
Alzheimer’s disease is a gradual disease, it is often
detected for a specific person in a late stage of the dis-
ease. This means that class labels and thus also their
patterns (concepts) shift over time (CS2).

3 RELATED WORK

In this section, we first discuss related work in the area
of data-driven prediction of product failures (3.1).
Next, we discuss related work on known data stream
mining algorithms that address dataset shifts (3.2).

3.1 Prediction of Product Failures

Existing reviews on the prediction of product fail-
ures show an increased interest for data-driven solu-
tions (Wu, 2013). Khoshkangini et al. (Khoshkangini
et al., 2019) state that most of related work relies
solely on age-related variables of products to train
predictive classifiers. Such variables are, e. g., the
mileage or MIS. Furthermore, they prove that the in-
clusion of product usage information, i. e., logged
on-board data, leads to a performance gain for pre-
dictions. The benefits of using product usage infor-
mation has been shown in other work from Volvo
Trucks (Prytz et al., 2015), in which the authors ana-
lyzed truck usage data collected over several years.

In our use case however, if we train a classi-
fier with usage information of trucks in the training
dataset T , we could not apply this classifier to the new
trucks in the test dataset T ′. This is because the trucks
in T ′ are not yet produced at the beginning of 2017,
so that no usage information is available for them as
features. We hence use the individual truck configura-
tions as features, since this is common in both datasets
T and T ′ (see Table 1). Additional advantages of us-
ing truck configurations as features is that they are
ready for analysis from the truck production and re-
main unchanged during the useful life. Moreover, this
static property represents a kind of ground truth in the
non-stationary environment of the truck production.
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In summary, related work in the domain of prod-
uct failure prediction conducts their studies with
assumptions and data-setups that differ from ours.
Moreover, it turns out that the two kinds of DSS are
not considered by related work at all, although they
are important for the prediction of product failures.
The diversity of feature distributions (CS1), i. e., of
truck variants and their configurations, leads to differ-
ent usage patterns (Khoshkangini et al., 2019). This
in turn increases the variety of usage data across prod-
ucts produced at different points in time. Further-
more, Wu highlights the difficulties of concept shifts
(CS2) by using incomplete warranty data (Wu, 2013).

3.2 Data Stream Mining Algorithms for
Addressing Dataset Shifts

Common algorithms addressing dataset shifts imple-
ment approaches from Data Stream Mining (Homay-
oun and Ahmadzadeh, 2016), i. e., incremental learn-
ing (Losing et al., 2018) and windowing (Bifet and
Gavaldà, 2007). In the following, we discuss these
algorithms in terms of their ability to address the co-
variate shift (CS1) and concept shift (CS2) as they are
present in our use case given our data characteristics.
Incremental Learning Algorithms: The aim in this
approach is to keep the classifiers up to date or to
re-train them again with new or changing data (Los-
ing et al., 2018). Related work discusses several
adaptations of non-stream classification algorithms
so that these batch learning algorithms support in-
cremental learning, e. g., for Decision Trees (Utgoff,
1989), Support-Vector-Machines (Bordes et al., 2005)
and k-Nearest-Neighbors (kNN) (Losing et al., 2018).
Besides, tailored algorithms exist to handle DSS,
e. g., the Adaptive Random Forest (ARF) (Gomes
et al., 2017). ARF is a widely accepted classifica-
tion algorithm for evolving data streams and extends
Breiman’s (Breiman, 2001) original Random Forest
algorithm by a drift detection component. If the al-
gorithm detects a drift for one of the decision trees
in the ensemble, a new tree is trained in the back-
ground until it is ready to replace the tree in the en-
semble for which the drift has been detected. An ex-
tension exist to handle imbalanced datasets in par-
ticular: Adaptive Random Forests with Resampling
(ARFRE ) (Boiko Ferreira et al., 2019). Another inter-
esting algorithm to handle DSS are Fuzzy Hoeffding
Decision Trees (FHDT) (Ducange et al., 2021), which
is an extension of HDT (Domingos and Hulten, 2002)
to address concept shifts in data stream classification.
Windowing Algorithms: To address DSS in data
streams, several windowing approaches exist (Bifet
and Gavaldà, 2007; Iwashita and Papa, 2019; Lu

et al., 2019). For instance, ADaptive WINdowing
(ADWIN) (Bifet and Gavaldà, 2007) uses a sliding-
window approach with a dynamic window size. As
long as no concept shift is detected, the window grows
accordingly, otherwise it shrinks. A new classifier is
trained when a concept shift is detected. This drift de-
tection is performed by comparing different subsets.
Discussion: Incremental learning and windowing are
based on the same basic assumption as they prior-
itize new data more than old data. The reason is
that more recent data inherently co-describe the DSS.
When predicting product failures, however, the priori-
tization of certain data subsets is not as clear as litera-
ture assumes. This prioritization has to explicitly con-
sider the trade-off between both kinds of DSS: covari-
ate (CS1) and concept shift (CS2) (see Section 2.3).

Regarding the concept shift (CS2), the data must
even be prioritized exactly the opposite way round.
In fact, data subsets of older trucks are explicitly pre-
ferred for training classifiers, given that they have
higher MIS values and higher c+ ratios. Moreover,
trucks with a higher MIS are more likely not to fail
anymore and thus to be stable in their class label.
This also means that the probability for a concept
shift decreases. For our use case, incremental learn-
ing and windowing need to be adapted, so that older
trucks are weighted higher than newer ones. How-
ever, these older trucks have lower V S values and
thus a less similarity to the trucks contained in the test
dataset T ′. Hence, preferring older trucks due to the
concept shift (CS2) may increase the negative effects
of the covariate shift (CS1). Such a non-trivial trade-
off relationship is however not explicitly addressed at
all by related approaches to addressing dataset shifts.

This trade-off relationship between CS1 and CS2
calls for a more in-depth evaluation of approaches to
incremental learning and windowing. This evalua-
tion has to consider how these techniques may address
both kinds of dataset shifts at the same time, includ-
ing their trade-off. To the best of our knowledge, lit-
erature however does not comprise any corresponding
study. In order to address this issue, we have carried
out experiments for our use case of predicting product
failures. We detail on this in the following section.

4 EXPERIMENTAL STUDY
DESIGN

The aim is to train the best possible classifier M to
classify the 42,260 trucks in the test set T ′, i. e., those
produced in 2017. We first present our experimental
setup for training classifiers (4.1). Then, we explain
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how we evaluate the classification results in scenarios
for both incremental learning and windowing (4.2).

4.1 Experimental Setup

The data available for our experiments are high-
dimensional, low-sample size (HDLSS) datasets. For
HDLSS datasets, it is typical that the number of fea-
tures x is higher than the sample size N (Marron et al.,
2007). This applies to the 97 samples of target class
c+ on 01/01/2017. Further, the feature space compris-
ing 3,000 disjunctive features. Therefore, we need to
take the typical aspects of HDLSS data into account
when choosing the classification algorithm and tech-
niques for sampling and feature selection. With a c+

ratio of about 0.12% on 01/01/2017, the dataset is
highly imbalanced. Therefore, this binary class im-
balance must also be taken into account in the setup.
Classification Algorithm: Our use case implies some
constraints that restrict the choice of classification al-
gorithms. The first is the supply constraint which de-
termines how many trucks can be equipped with the
more robust part B . Here, probabilistic classifica-
tion algorithms are especially suitable. Probabilistic
in this context means that each trained classifier out-
puts a confidence value for each truck in T ′. This
indicates how confident the classifier is that a partic-
ular truck belongs to class c+. The idea is to classify
each truck in T ′ and to sort the trucks according to
their confidence values in descending order. Then,
we label all trucks having confidence values above a
certain threshold with the positive class c+. These
trucks are equipped with part B , and the remaining
trucks with lower confidence values get part A . We
thereby set the threshold value as low as possible, so
that firstly as many trucks as possible get part B , but
secondly the supply constraint of this part is still sat-
isfied. The Support-Vector-Machine (SVM) (Cortes
and Vapnik, 1995) is a well-known algorithm to con-
sider as it handles binary features well. Studies (Mar-
ron et al., 2007) have shown that SVM suffers from
the characteristics of HDLSS data, because SVM en-
counters difficulties to determine the support vectors
with a low number of samples and a high number of
features. Thus, Marron et al. developed the Distance-
Weighted-Discrimination. However, this approach is
not able to handle the negative impacts of combined
DSS nor analyze its behaviors.

For this purpose, the bootstrap aggregation (bag-
ging (Breiman, 1996)) is a proper method. Due to
the statistical properties of bagging, it is thus pos-
sible to draw reliable conclusions from the classifi-
cation results related to the combined DSS behavior.
We choose the Random Forest (RF) (Breiman, 2001)

algorithm because it is the most prominent bagging
technique, requires few hyper-parameters, and still
produces stable results. Moreover, authors with simi-
lar data already had good experiences with RF (Prytz
et al., 2015; Hirsch et al., 2019). Gunduz et al. even
highlighted RF as a suitable classification algorithm
to deal with HDLSS data (Gunduz and Fokoue, 2015).

At each measure point, we determine the opti-
mal hyper-parameters for the RF learning algorithm
via grid search and k-fold cross-validation. Then, we
train a final model with the tuned hyper-parameters.
Sampling and Parameter Setting: As listed in Table 2,
only 97 failed trucks are available on 01/01/2017.
Consequently, 80,851 trucks have not yet failed.
From a machine learning perspective, a 50:50 distri-
bution between the two classes is generally consid-
ered most favorable for binary classification. To bal-
ance both classes, two common ways exist. One is
Random Oversampling (ROS) (Turki and Wei, 2016),
which randomly copies instances from the minority
class c+. The other way is Random Undersampling
(RUS) (Hasanin et al., 2019), which randomly re-
moves instances from the majority class c−.

ROS is not suitable from a domain-specific point
of view, because the 97 known instances of class c+

only have a similarity of about 50% to the failures
in T ′. Thus, randomly copying instances of class
c+ does not lead to any improvement. Using RUS,
80,754 trucks of the majority class c−, i. e., 99.76% of
the trucks in T , must be removed in order to achieve
the aspired 50:50 class distribution. This massive re-
moval consequently leads to a loss of information.

To address this issue and to investigate the possi-
ble effects of random sampling on a classification re-
sult, we parameterize RUS for our study with a self-
defined ”Negative Sampling Factor” (NSF). For in-
stance, a NSF of 1 means that for each of the 97 fail-
ures (class c+), one randomly selected counterexam-
ple of a nonfailed instance (class c−) is added to them.
The training data thus consists of 97 failures and 97
non-failures. Another example with a NSF of 5 means
that five nonfailed trucks are added to each of the 97
failures, i. e., 485 trucks of class c−. In our evalua-
tion, we carried out a grid search with a value range
for NSF between 1-100 with step size 1. In Section 5,
we present the best TPR scores with their related NSF.
Feature Selection: The feature space X contains
3,000 unique features for truck configurations. Note
that X does not contain a single feature that allows
for learning a discriminant function with only this
feature, e. g., a particular engine. Nevertheless, in
order to mitigate the risk of overfitting, we tested
common feature selection techniques such as For-
ward Selection, Backward Elimination (John et al.,
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1994), Principal-Component-Analysis (PCA) (Pear-
son, 1901) and Boruta (Degenhardt et al., 2017).
However, none of them improved the quality of T . In
fact, the classification results were even poorer than
the baseline. This is due to the concept shift (CS2),
which causes techniques to consider many features as
unimportant that are actually important. Specifically,
this results from the fact that the trucks gradually fail.
As a result, decision boundaries identified at different
points in time may sometimes deviate more or less
from actual patterns. Thus, feature selection does not
make sense and is not relevant to us because it biases
the classification results until all samples of class c+

are visible in the data, i. e., when the guarantee period
has expired. Therefore, we do not report any results
for using feature selection in our experiments.
Hardware and Software Setup: We have carried
out all experiments on a computer with an Intel(R)
Core(TM) i7-6820HQ CPU with 8 cores @ 2.70GHz,
32 GB RAM and Windows 10 as operating system.
The data of the produced trucks in T and T ′ are
stored in a relational database using Microsoft SQL
Server 2014 with Transact-SQL as programming lan-
guage for data pre-processing and sampling. For
training the classifiers M , we use R version 3.6.12.
The corresponding R packages are randomForest
version 4.6-143 and Classification and REgression
Training (caret) version 6.0-884.

4.2 Evaluation Scenarios

According to our findings in Section 3.2, we evaluate
two classification scenarios, (1) Incremental Learn-
ing and (2) Windowing. As shown in Figure 1, the
use case data is already split into training (T ) and
test (T ′) datasets. As a performance score, we re-
port the sensitivity, which corresponds to the True-
Positive-Rate (TPR) of each classifier M applied on
T ′ with data status on 01/01/2022. So, this TPR indi-
cates how correctly a classifier predicts all failures of
trucks in T ′ that have taken place between 01/01/2017
and 01/01/2022. For each result, we train ten RF clas-
sifiers and average their TPR to obtain the final TPR.
Scenario 1: Incremental Learning is suitable to our
use case in order to assess the impacts of gradual label
and therefore concept shifts (CS2). This is due to the
fact that incremental learning follows the logic that
the more time passes, the more failures are present in
the training dataset T , i. e., more labels have shifted
from c− to c+. This in turn may improve the predic-
tive quality. We start our evaluation scenario with the

2https://www.r-project.org/
3https://rdocumentation.org/packages/randomForest/
4https://rdocumentation.org/packages/caret/

training of the first classifier M1 on 01/01/2017 (t1)
with 97 failures contained in T . We then apply this
classifier to a subset T ′1 ⊂ T ′ of only those trucks
produced in January 2017.

One month later (t2), we train a new classifier M2
with the same set of trucks in training dataset T . Until
then, however, 27 new failures have happened, so that
these 27 trucks in T shift their class label from c− to
c+. Hence, T then comprise in total 124 failed trucks
and positive class labels c+ instead of the previous 97.
We use this classifier M2 to predict the labels of trucks
produced in February 2017 (T ′2 ⊂ T ′). We corre-
spondingly continue this procedure month by month
until the end of 2017, i. e., until 12/2017 (t12). Ta-
ble 4 shows the evaluation results with various points
in time from t1 to t12. In addition, the c+ ratio im-
proves with each passing month. Thus, a monthly
increase in prediction performance is expected over
time. We discuss this hypothesis in Section 5.1.1.
Scenario 2: Windowing is suitable to investigate the
trade-off relationship between CS1 and CS2 in more
detail. We expect negative effects of CS1 when using
older trucks in T for classifier training. This is be-
cause these older trucks are less similar in their fea-
ture values to those in T ′ than newer trucks. Con-
versely, we expect negative impacts from CS2 when
using newer trucks as training data because these
newer trucks have a lower c+ ratio.

In order to investigate this empirically, we divide
the entire training dataset T into 8 subsets Ti, each
with a fixed window size of one quarter, i. e., three
months (see Table 5). We also examined a window
size of 1 month each. However, we chose to present
the results with quarters as window size instead of sin-
gle months, as both provide the same insights. In ad-
dition, the representation is clearer with quarters as
window sizes. The study starts with samples of trucks
that have been produced in Q1/2015 (T1). After that,
the window goes one quarter forward and takes the
trucks produced in Q2/2015 (T2), followed by trucks
produced in Q3/2015 (T3), and so on. For each quar-
ter, we train a classifier Mi with each subset Ti of the
training data. We then apply this classifier Mi on the
whole test dataset T ′ to obtain the TPR. This way,
we examine whether the older or the newer subsets Ti
of the training data are more likely to result in better
TPRs. This helps to assess the negative impacts of
CS1 (older data) and of CS2 (newer data), as well as
the trade-off between them.

Baseline for the evaluation is the TPR of 55.9%
(see Section 2.1). This baseline corresponds to a so-
lution that does not explicitly address DSS. We may
use this baseline to examine whether approaches to
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Table 4: Incremental Learning: Overview of TPR scores and relevant meta-features of T at monthly training times ti.

Time of c+ c+ ratio �MIS V S c+ TPR NSF
training Mi

t1: 01/2017 97 0.12% 10.90 48.75% 61,21% 5
t2: 02/2017 124 0.15% 11.64 49.59% 60.92% 9
t3: 03/2017 152 0.19% 12.48 49.15% 62.00% 22
t4: 04/2017 188 0.23% 13.48 43.38% 58.80% 19
t5: 05/2017 222 0.27% 14.47 50.24% 58.74% 1
t6: 06/2017 272 0.34% 15.47 46.69% 59.26% 12
t7: 07/2017 320 0.40% 16.47 48.89% 59.46% 24
t8: 08/2017 379 0.47% 17.47 46.44% 59.50% 18
t9: 09/2017 440 0.54% 18.47 48.04% 58.55% 5
t10: 10/2017 488 0.60% 19.47 39.59% 57.92% 17
t11: 11/2017 554 0.68% 20.47 45.41% 57.90% 3
t12: 12/2017 640 0.79% 21.47 40.36% 57.88% 2

incremental learning or windowing really address our
DSS and thus lead to improvements in the TPR or not.

5 EVALUATION

We report the results of our experimental study ac-
cording to the setup described in Section 4. First, we
discuss the classification results of the two approaches
of incremental learning and windowing in the respec-
tive evaluation scenarios (5.1). Then, we evaluate
data-driven classifiers from a domain-specific point of
view, i. e., the concrete added value for truck manu-
facturers by saving monetary warranty costs (5.2).

5.1 Results for Evaluation Scenarios

Basis for the two approaches of incremental learning
and windowing in the evaluation scenarios is the use
case introduced in Section 2.1. Here, data scientists
train a model early in 2017. So, they use the training
data T with a data status in this year, i. e., the statuses
t1 to t12 for the incremental learning approach (see
Table 4). For the evaluation of windowing (Table 5),
we use the fixed data status on 01/01/2017. For the
discussions of the evaluation results, we use the meta-
features c+ ratio, �MIS and V S c+ to characterizes
the impacts of the two dataset shifts CS1 and CS2.
Note that we use V S c+ instead of V S , because our
paramount interest are trucks that will fail in future.
Furthermore, we have listed the best NSF value for
each measurement in both Table 4 and Table 5.

5.1.1 Results for Incremental Learning

Here, we train different classifiers monthly with new
labels updated each month (t1−12). We then ap-

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

61.21%
62.00%

58.80%

40%

45%

50%

55%

60%

65%

70%

59.50%

57.92%

57.88%

True-Positive-Rate (TPR)Baseline (TPR: 55.90%)

Figure 2: Incremental Learning: the y-axis shows the TPR
scores and the x-axis the different points in time t1 to t12.

ply each classifier to the next batch of manufactured
trucks (T ′i). With the monthly changing data sta-
tuses in 2017, i. e., t1 to t12, the expectation is to
start with a less performant model at t1. Neverthe-
less, the more time passes, the better the predictive
performance is supposed to become, since the c+ ra-
tio increases monthly. This is because the formation
of current to final class patterns converges over time.

Figure 2 shows the TPR scores for each point in
time ti. At time point t1, the TPR is 61.21% and can
even improve to 62% by t3. So, this at first glance
corresponds to the expected behavior that the TPR in-
creases over time. However, this expectation is con-
tradicted with following time points, where the TPR
tends to get worse. With 57.88%, the final incremen-
tal TPR at the end of the time line (t12) is even lower
than the one at t1. This incremental TPR is signifi-
cantly influenced by two previous time points: t4 and
t10. The two drops in performance at t4 and t10 can
be explained by the meta-feature of truck similarity
V S c+ (see Table 4). On average, the value of V S c+
is 46.38%, measured from t1 to t12. Especially at
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Table 5: Windowing: Overview of TPR scores and relevant meta-features for time-consecutive training subsets (windows) Ti.
The data status for training is always 01/01/2017.

Production c+ c+ ratio �MIS V S c+ TPR NSF
window Ti

T : 2015/16 97 0.12% 10.90 49.95% 55.90% 5
T1: Q1-2015 9 0.11% 21.35 50.65% 44.83% 17
T2: Q2-2015 29 0.30% 18.32 52.43% 51.19% 11
T3: Q3-2015 27 0.26% 15.53 53.89% 55.71% 8
T4: Q4-2015 17 0.16% 12.40 54.35% 61.51% 4
T5: Q1-2016 8 0.08% 9.13 60.31% 69.34% 3
T6: Q2-2016 7 0.06% 6.20 65.11% 56.27% 1
T7: Q3-2016 0 0.00% 3.17 - - -
T8: Q4-2016 0 0.00% 0.90 - - -

the time points t4, t10 and t12, the V S c+ values are
however much lower than this average with 43.28%,
39.59% and 40.36%, respectively. Thus, despite in-
creasing c+ ratio, the failure behavior represented by
t4, t10 and t12 is increasingly different from the fail-
ure behavior of current production batches (T ′i). We
hence conclude that the covariate shift (CS1) has a
significant impact on the poor TPR scores.

The final TPR score with incremental learning is
the 57.88% at time point t12. Although this is much
lower than expected, it still constitutes an increase
of 1.98%-points compared to the baseline. Note
that this small improvement may be achieved despite
the above-mentioned negative effects of the covari-
ate shift (CS1). So, incremental learning seems to
address the other dataset shift, i. e., the concept shift
(CS2), at least to a moderate degree. This is also evi-
dent, as the c+ ratio increases monthly (see Table 4).

Altogether, the behavior of the incremental TPR
and our discussion above prove the non-trivial trade-
off relationship between CS1 and CS2 and that it
constitutes a challenge for approaches to incremental
learning. In the following, we investigate this trade-
off in more detail via the approach of windowing.

5.1.2 Results for Windowing

Here, we split the dataset T into eight training subsets
(T1−8). Since the subsets T7−8 do not contain failed
trucks, we can only train classifiers with the subsets
T1−6, respectively the windows (Ti). We then apply
each trained classifier on all trucks in T ′ and measure
the resulting TPR scores for each window Ti.

Figure 3 shows the TPR scores for each window
Ti. For windows T1 to T5, it is noticeable that the
TPR scores get better with each window and thus with
decreasing truck age. This is due to the fact that al-
though the c+ ratio is higher in the first windows, the
lack of similarity leads to a weaker predictive perfor-

40%

True-Positive-Rate (TPR)Baseline (TPR: 55.90%)

T1 T2 T3 T4 T5 T6

45%

50%

55%

60%

65%

70%

44.83%

51.19%

55.71%

61.51%

69.34%

56.27%

Figure 3: Windowing: the y-axis shows the TPR scores and
the x-axis the different windows T1 to T6.

mance (TPR). Thus, older trucks in T1 are less similar
to the failed trucks in T ′ than newer trucks from T5.

Going further with the subsequent window T6, the
TPR value decreases by about 13%-points although
the V S c+ value is higher than at T5. This drop in
performance can be explained by the decrease in c+

ratio due to the low average MIS of the trucks in
T6. Among all subsets, the covariate shift (CS1) has
the lowest negative impact on the TPR at T6 (V S c+:
65.11%), because these trucks are most similar to the
current production. This is contrasted by the concept
shift (CS2), which has the highest negative impact on
the TPR at T6 (c+ ratio: 0.06%), among all subsets.

Moving from subset T5 to the left, the negative ef-
fect of CS2 decreases by the fact that the trucks have
already been in use for a longer time. So, they had
a higher chance to fail and the c+ ratio is usually
higher for subsets with older trucks. However, it is
evident from the V S c+ values in Table 5 that older
failed trucks in early subsets Ti are less similar to the
failed trucks in the test set T ′. So, an higher average
age of trucks leads to an increase in the negative ef-
fects of CS1. Summarized, both dataset shifts have
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negative impacts on the True-Positive-Rate. Thus, we
cannot state which dataset shift is more dominant.

Only the training of classifiers on subsets T4 and
T5 leads to an increase of the TPR compared to the
baseline. Training the classifier on T4 leads to an in-
crease of the TPR by 5.61%-points, whereas training
on T5 leads to an increase of 13.44%-points. The win-
dow T5 represents the most balanced dataset, as both
c+ ratio and truck similarity V S c+ have high val-
ues (see Table 5). Trucks in T5 are old enough (�MIS:
9.13) to have an adequate number of failures (c+ ra-
tio: 0.08%), and those failed trucks have a adequate
similarity (V S c+: 65.11%) to the failed trucks in T ′.

5.2 Domain-specific Evaluation

Now we discuss the concrete added value that data-
driven classifiers imply in terms of saving monetary
warranty costs. In this context, we compare the po-
tentials of cost savings yielded by the employed ap-
proaches to incremental learning and windowing with
the baseline. This baseline is a classifier trained on the
entire training dataset T without explicitly addressing
the two dataset shifts and results in a TPR of 55.9%.

In order to highlight the potential cost savings in
practical use, we assume that each repair of the partic-
ular damage leads to warranty costs of about $2,500.
Note that this is a conservative assumption because
the scope of components that may fail is very wide.
Corresponding to the 4,585 failed trucks in T ′, this
results in a total of ∼ $11.4 million in warranty costs.

The final TPR achieved by the approach to incre-
mental learning is 57.88%. So, it can reduce the fail-
ure rate by 1.98%-points compared to the TPR of the
baseline. With 4,585 failed trucks contained in T ′
(see Table 2), this leads to about 91 less truck fail-
ures. It hence results in potential cost savings of about
$0.2 million. The cost savings yielded by windowing
are however much higher. Here, the best TPR score
of 69.34% is achievable with the training subset T5,
resulting in a reduction of the failure rate by 13.44%-
points. So, we may prevent with windowing 616 more
failures, resulting in potential cost savings of approxi-
mately $1.5 million. This is a significant reduction of
avoidable warranty claims and consequential costs.

The experimental analyses show that the best clas-
sifier to deal with combined DSS is trained with the
Random Forest algorithm, NSF sampling, quarter-
wise windowing, and grid search hyperparameter op-
timization. In practice, it is however difficult and
complex to find the best training subset, i. e., T5. This
is due to the fact that a final TPR score can only be
measured after waiting a period of several years or at
least the warranty period of the future trucks. There-

fore, further research is needed to devise approaches
that may early identify those windows yielding a high
predictive performance of the classifier without wait-
ing that long period of time. In contrast, incremental
learning can directly be applied and save $0.2 million.

6 CONCLUSION AND FUTURE
WORK

In this paper, we discuss our experimental study for
a real-world use case of a data-driven prediction of
product failures. We provide insights into the data
characteristics in such real-world scenarios and into
two kinds of dataset shifts (DSS) that result from
these data characteristics: a covariate shift (CS1) and
a concept shift (CS2). In contrast to the assump-
tions made in literature, these two kinds of dataset
shifts usually occur together in real-world use cases.
Furthermore, both DSS show a trade-off relationship,
i. e., choosing data to avoid one, risks making the
other one worse. With our experimental study, we
prove that existing approaches to addressing DSS,
e. g., incremental learning and windowing especially
struggle with this trade-off relationship between CS1
and CS2. Nevertheless, our evaluation shows that
both approaches may still be used to train classifiers
that yield better results than the baseline of a classifier
that does not address DSS at all. For instance, the use
of incremental learning leads to a True-Positive-Rate
(TPR) of 57.88%. This still outperforms the baseline
by 1.98%-points. Although these TPR scores are low
from a data science perspective, this has the potential
to realize monetary cost savings for manufacturers.

In future, we are going to develop novel ap-
proaches to pre-process the data in order to ade-
quately address both covariate shift (CS1) and con-
cept shift (CS2). For instance, a domain-specific
sampling strategy may incorporate the meta-features
V S c+ and MIS to select only trucks for the training
dataset that are less affected by the two dataset shifts.
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