This research is only a first step to use all the
performance of the RP4. It is certain that these results
would be enhanced with a specifically programming
consensus protocol instead of the one implemented in
Geth. Another option would be to use racks of RP4 as
a single node and try to parallelize the execution of
SCs, trying to maximize throughput and minimize
CPU load. This would be able to address the data
processing to the device with less CPU usage.
However, probably the main advantage of
knowing the limits of RP4 in blockchain is using it at
the same time as an IoT node. It is, as IoT implies
acquiring and /or recording data at a certain time
windows, it is possible to restrict certain time
windows for IoT processing, and other time windows
for the execution of SCs in the blockchain, without
losing performance of the RP4.
ACKNOWLEDGEMENTS
This research was supported by the Block of Things
for Factory (BoT4F) project funded by the Fondo
Europeo de Desarrollo Regional FEDER a través del
Programa Interreg V-A España-Portugal (POCTEP)
2014–2020.
REFERENCES
Breland, D. S., Skriubakken, S. B., Dayal, A., Jha, A.,
Yalavarthy, P. K., & Cenkeramaddi, L. R. (May de
2021). Deep Learning-Based Sign Language Digits
Recognition From Thermal Images With Edge
Computing System. IEEE Sensors Journal, 21, 10445–
10453. doi:10.1109/jsen.2021.3061608
Buccafurri, F., Lax, G., Nicolazzo, S., & Nocera, A. (2017,
August). Overcoming Limits of Blockchain for IoT
Applications. Proceedings of the 12th International
Conference on Availability, Reliability and Security.
ACM. doi:10.1145/3098954.3098983
Dhillon, N., Sutandi, A., Vishwanath, M., Lim, M., Cao, H.,
& Si, D. (April de 2021). A Raspberry Pi-Based
Traumatic Brain Injury Detection System for Single-
Channel Electroencephalogram. Sensors, 21, 2779.
doi:10.3390/s21082779
Ding, L., Wang, S., Wan, R., & Zhou, G. (2020,
November). Securing core information sharing and
exchange by blockchain for cooperative system. 2020
IEEE 9th Data Driven Control and Learning Systems
Conference (DDCLS). IEEE.
doi:10.1109/ddcls49620.2020.9275195
Gasull, V. G., Larios, D. F., Barbancho, J., León, C., &
Obaidat, M. S. (2012). A Wildfire Prediction Based on
Fuzzy Inference System for Wireless Sensor Networks.
En E-Business and Telecommunications (págs. 43–59).
Springer Berlin Heidelberg. doi:10.1007/978-3-642-
35755-8_4
Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V.,
Ritzdorf, H., & Capkun, S. (October de 2016). On the
Security and Performance of Proof of Work
Blockchains. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications
Security. ACM. doi:10.1145/2976749.2978341
Guerra, J. A., Guerrero, J. I., Garcı
́
a, S., Domı
́
nguez-Cid,
S., Larios, D. F., & León, C. (February de 2022).
Design and Evaluation of a Heterogeneous Lightweight
Blockchain-Based Marketplace. Sensors, 22, 1131.
doi:10.3390/s22031131
Gürsoy, G., Brannon, C. M., & Gerstein, M. (2020, June).
Using Ethereum blockchain to store and query
pharmacogenomics data via smart contracts. BMC
Medical Genomics, 13. doi:10.1186/s12920-020-
00732-x
Javed, M. U., Rehman, M., Javaid, N., Aldegheishem, A.,
Alrajeh, N., & Tahir, M. (March de 2020). Blockchain-
Based Secure Data Storage for Distributed Vehicular
Networks. Applied Sciences, 10, 2011.
doi:10.3390/app10062011
Kimani, D., Adams, K., Attah-Boakye, R., Ullah, S.,
Frecknall-Hughes, J., & Kim, J. (2020, December).
Blockchain, business and the fourth industrial
revolution: Whence, whither, wherefore and how?
Technological Forecasting and Social Change, 161,
120254. doi:10.1016/j.techfore.2020.120254
Lin, S.-Y., Zhang, L., Li, J., Ji, L.-l., & Sun, Y. (2022,
January). A survey of application research based on
blockchain smart contract. Wireless Networks.
doi:10.1007/s11276-021-02874-x
Maesa, D. D., & Mori, P. (April de 2020). Blockchain 3.0
applications survey. Journal of Parallel and Distributed
Computing, 138, 99–114.
doi:10.1016/j.jpdc.2019.12.019
Qahtan, S., Yatim, K., Zaidan, A. A., Alsattar, H. A.,
Albahri, O. S., Zaidan, B. B., Mohammed, R. T. (2022).
Novel Multi Security and Privacy Benchmarking
Framework for Blockchain-Based IoT Healthcare
Industry 4.0 Systems. IEEE Transactions on Industrial
Informatics, 1–1. doi:10.1109/tii.2022.3143619
Sajid, M. B., Ullah, S., Javaid, N., Ullah, I., Qamar, A. M.,
& Zaman, F. (2022, January). Exploiting Machine
Learning to Detect Malicious Nodes in Intelligent
Sensor-Based Systems Using Blockchain. (A. Basit,
Ed.) Wireless Communications and Mobile Computing,
2022, 1–16. doi:10.1155/2022/7386049
Suzen, A. A., Duman, B., & Sen, B. (June de 2020).
Benchmark Analysis of Jetson TX2, Jetson Nano and
Raspberry PI using Deep-CNN. 2020 International
Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA).
IEEE. doi:10.1109/hora49412.2020.9152915
Tsang, Y. P., Wu, C. H., Ip, W. H., & Shiau, W.-L. (March
de 2021). Exploring the intellectual cores of the
blockchain–Internet of Things (BIoT). Journal of
Enterprise Information Management, 34, 1287–1317.
doi:10.1108/jeim-10-2020-0395