
Review of the Adaptability of a Set of Learning Games Meant for
Teaching Computational Thinking or Programming in France

Hajar Saddoug1, Aryan Rahimian1, Bertrand Marne2 a, Mathieu Muratet3 b, Karim Sehaba4 c
and Sébastien Jolivet5 d

1Sorbonne Université, Place Jussieu, Paris, France
2ICAR UMR 5191, Université Lumière Lyon 2, Parvis René Descartes, Lyon, France

3Sorbonne Université, CNRS, INS HEA, LIP6, F-75005 Paris, France
4LIRIS - Université Lumière Lyon 2, avenue Pierre Mendès-France, Lyon, France

5IUFE, Université de Genève, rue du Général-Dufour, Genève, Switzerland

Mathieu.Muratet@lip6.fr, karim.sehaba@liris.cnrs.fr, Sebastien.jolivet@unige.ch

Keywords: Serious Games, Meta-design, Instrumental Genesis, Computational Thinking, Programming.

Abstract: Our work is part of a broader research project on how French teachers and trainers can appropriate learning
games dedicated to computer science and programming. To foster this appropriation, we aim to implement a
meta-design approach that favours instrumental genesis. In this article, we describe our review of a selection
of learning games to identify whether they are suitable for this approach. We introduce a set of rather generic
and reusable criteria to characterize the instrumentalization of serious games. With these criteria we
thoroughly review 10 games among 48 selected. Thus, for each game selected, the identified criteria point out
the availability of means and tools allowing teachers and trainers to understand the game, but they also assess
adaptability of the latter in relation to pedagogical needs. Our results show that the adaptability of most of
these 10 games remains weak and out of reach for many teachers and trainers. Indeed, none of the reviewed
games were able to meet the requirements set out in the framework of the meta-design approach.

1 INTRODUCTION

In our research context, education in France, the
question of computer science education dates back to
the 1970s and is characterized by a balance between
two conceptions of what should be taught. On the one
hand, there is the idea of teaching IT and computer
science as a tool. On the other hand, the idea of
computer science as an academic subject, with its
own concepts and methods to be taught (Baron &
Drot-Delange, 2016). After its demise years ago,
computer science has made a comeback in French
school curricula, where it is referred to as
“computational thinking”. According to Jeannette
Wing, computational thinking involves five cognitive
abilities: (1) algorithmic thinking, (2) abstraction, (3)
evaluation, (4) decomposition, and (5) generalization

a https://orcid.org/0000-0002-4953-9360
b https://orcid.org/0000-0001-6101-5132
c https://orcid.org/0000-0002-6541-1877
d https://orcid.org/0000-0003-3915-8465

(Wing, 2006). The French researcher Gilles Dowek
(Dowek, 2011) has structured computer science into
four concepts so that the content taught provides an
accurate picture of the discipline itself: (1) digital
information, (2) algorithms, (3) languages, and (4)
computing machines. Thus, computer science is not
reduced to coding, which constitutes only the final
phase of the translation into a programming language.
Conceived in such a fashion, computer science leaves
the status of a tool for what it really is: a science with
its own specificities and requiring it’s a proper
learning process. However, teaching computational
thinking in France at both elementary and high school
levels requires a major involvement from teachers
(Kradolfer et al., 2014) in order to tackle this new
discipline, due to a lack of training (both pre-service
and in-service).

562
Saddoug, H., Rahimian, A., Marne, B., Muratet, M., Sehaba, K. and Jolivet, S.
Review of the Adaptability of a Set of Learning Games Meant for Teaching Computational Thinking or Programming in France.
DOI: 10.5220/0011126400003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 1, pages 562-569
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Alongside these changes in computer science
teaching, serious learning games have emerged and
offer many advantages over traditional teaching tools.
Indeed, many authors consider serious learning
games as promising, especially for increasing
learners’ engagement and motivation (Bouvier et al.,
2014; Garris et al., 2002; Keller, 1995; Malone &
Lepper, 2005; Prensky, 2004), while others consider
these tools to foster a more constructivist learning
(Bogost, 2007, 2013; Brunet et al., 2020; Gee, 2009;
Ryan et al., 2012). Regarding teaching computer
science and programming, many serious games exist
(Miljanovic & Bradbury, 2018; Vahldick et al.,
2014), but their appropriation by teachers remains
scarce. To tackle this issue, we make the hypothesis
that a participatory design method such as meta-
design could be suitable because it is promoting
instrumental genesis (Rabardel, 1995, 2003). Meta-
design is an advanced participatory design method, in
which the end users (“owners of problems”), in our
case the teachers, are intimately involved in the initial
design phases. But, and that is the reason for meta-
design relevance in solving appropriation problems,
users must also have the means to continue to act as
designers during the use phases of the artefacts. It is
possible, thanks to underdesign, which Fischer et al.
(Fischer et al., 2004) define as: “[…] underdesign
aims to provide social and technical instruments for
the owners of problems to create the solutions [of
their problems] themselves at use time”. Therefore, in
our case, the goal is to identify how teachers and
trainers, who are the end users of serious games
dedicated to programming, manage to take part in a
meta-design approach through the
instrumentalization of the artefact.

Nevertheless, in order to implement this meta-
design approach, it is necessary to have flexible
artefacts (in our case, serious games) providing
functionalities allowing these end users (teachers or
trainers) to monitor their use at different levels of
abstraction and to adapt them accordingly, taking into
account their context and needs. In this article, we
carry out a review of learning games on computer
thinking with a focus on the tools made available to
promote the instrumental genesis and appropriation
of these games by teachers. The goal is to assess
adaptability of each of the games reviewed through a
meta-design approach.

In the first part, we present our methodology, i.e.
how we developed our assessment criteria, how we
constructed our selection of games to be assessed and
how we conducted the review. In the second part, we
present and discuss the results of this review, before
concluding in the last part.

2 METHODOLOGY

There are already several reviews of serious games
for programming in the literature. Among the
research that we have been able to consult, we have
noticed that the focus is mainly on the content and the
skills taught by the serious games reviewed (Lindberg
et al., 2019; Malliarakis et al., 2014; Miljanovic &
Bradbury, 2018; Vahldick et al., 2014). According to
some of these studies, such as Lindberg et al.
(Lindberg et al., 2019), there is a poor alignment
between the skills taught in serious games (29 were
reviewed) and those taught in the curricula
(particularly in French). This tendency is also found
in Malliarakis et al. and Miljanovic and Bradbury
(Malliarakis et al., 2014; Miljanovic & Bradbury,
2018), with respectively 12 and 49 games assessed
(and many overlaps between these studies). However,
these works never identified the possibility of an
instrumental genesis, for instance through
instrumentalization. Only Vahldick et al. (Vahldick et
al., 2014) discuss the importance that editors tools can
play in specific cases, yet without making it a
criterion for their review (40 games reviewed).

Therefore, we conducted our own review by
focusing on the ability of appraised games to have, on
the one hand, monitoring capabilities that allow the
teacher to understand how the game is used and, on
the other hand, adaptation capabilities that allow the
teacher to modify the game according to the results of
the monitoring.

2.1 Learning Games Selection

To compile a list of games related to computational
thinking for review, we combined the games we had
already identified in other research (Marne, Muratet,
et al., 2021; Marne, Sehaba, et al., 2021), with those
from the above-mentioned systematic reviews, and
with others searched on the web. We only retained
serious games that are currently functional (for
example, games using Flash technology are now very
difficult to use), affordable or free. As a result, we
have been able to identify 48 games that can be used
to learn to code or computational thinking (Table 1).

We focus on serious games intended for learning
computer science and programming in a school
context, so we chose to exclude games with no real
access to programming by the player, as well as those
only available on mobile phones or tablets (restricted
in French schools). We also merged the games with
similar features to Scratch (Resnick et al., 2009) or
Blockly (Fraser, 2015), both of which are microworlds

Review of the Adaptability of a Set of Learning Games Meant for Teaching Computational Thinking or Programming in France

563

Table 1: Initial list of 48 games, the 10 selected games are highlighted.

Algoblocs Code hunt CodeWars Elevator Saga Hocus Focus Pyrates SQL Murder
Mystery

AlgoPython Code Moji Codin’Game Empire Of Code Human Resource
Machine RoboCode StarLogo

Bee Bot Code Monkey Collabots Flexbox Defense Imagi Ruby Warrior Tynker

Blockly Code Monster Compute It Flexbox Froggy KoduGame Run Marco Unruly Splats

Ceebot CodeCombat CSS Diner Gladiabots Le chevalier de la
programmation Scratch Untrusted

CheckIO Codefi Cyber Dojo Grid Garden Pixel Screeps Vim adventures

Code CodeGym Duskers Heartbreak ProgAndPlay SPY

(Papert, 1987) offering programming with blocks of
instructions.
Then, we filtered the list of games, while sorting and
categorizing the games by considering the following
characteristics:
 Similarities and differences between the

games;
 Advantages and disadvantages of the tools

available within or with the games;
 Categories (e.g. age, field, cost);
 Type of training (when provided by the game):

self-training, traditional training, etc.
This classification allowed us to refine the list to

focus on a selection of 10 games (out of 48) that have
little in common and that corresponds well to our
objective: to identify serious games focused on
learning computer thinking and programming that
could be adapted or easily appropriated by teachers
and trainers, i.e. allowing the implementation of a
meta-design context. Henceforth, each game selected
for review is associated with a separate category.

2.2 Preparation of the Assessment
Framework

In order to establish our assessment framework, we
identified several criteria. First, we identified three
stages related to the possible adaptations that could be
made by teachers or trainers to the listed games. For
each of these three stages (before, during and after),
we identified, as a criterion, specific types of support
to adaptation:
 Before Adaptation: availability of tutorials

and explanations in different formats,
regarding how to handle the game and/or how
to use it for other training purposes.

 During Adaptation: ability to check for errors
during the game modification.

 After Adaptation: availability of an overview
of the modifications made to the game and/or
the presence of additional help (human or
interactive digital maintenance such as forums,
FAQs, etc.)

Furthermore, as a follow-up to this preparatory step,
we defined more refined and easily measurable
criteria. These criteria are detailed in the next section.

2.3 Refined Criteria for the Review

The purpose of this study is not to highlight some of
the serious games and disqualify others. The purpose
is to review the serious games, to sort them out with
fine-grained criteria, in order to provide a clear
framework covering both convergences and
divergences among the adaptable serious games
dedicated to the teaching of programming or
computational thinking.

Given its subjectivity, we were reluctant to use a
score system, especially as the main point of our
framework was to indicate the actual availability of
the defined criterion. Accordingly, we referred to the
criterion as “available” or “not available”, and in the
case of availability, we always comment on how the
criterion is provided. However, for one of the criteria,
the “Extent” of the scenario, we had to be able to be
more precise, without going into too much detail for
a quick analysis. Therefore, we settled on 3 possible
states: small, wide or no scenario.

Once criteria were identified during our
explorations, we decided to classify them. We
identified 7 classes, each with different criteria, which
are overviewed in Table 2.

GonCPL 2022 - Special Session on Gamification on Computer Programming Learning

564

Table 2: Overview of the 7 classes of criteria used in our review.

Classes Related Criteria
Adaptability Open Source Code, Teacher Profile, HMI Modification, Interaction Types.
Editing Modifying Tasks, Adding Tasks, Planning Tasks, Creating Scenarios, Editor Provided
Training Ability Guidelines (for playing), Pedagogical Guidelines (for editing), Didactic Support, Pedagogical Support
Monitoring Progress, Performance, Background Information, Log Formats
CS Specific Programming Languages
Community User Forum, Author/Publisher Contact Information
Scenario Extent, Stand-Alone Tasks

Adaptability is a crucial class of criteria for our
framework, describing the ability of the game to be
modified. It is broken down into 4 criteria:
 Open Source Code: we checked the availability of

the source code, its licence, and the availability of
any digital resources that have been used.
 Teacher Profile: we checked whether a specific

account and profile exist for trainers or teachers,
giving access to specific features (creating
lessons, planning them, viewing logs, scores,
etc.).
 HMI Modification: we checked whether the

game's interface could be modified.
 Interaction Types: we checked whether it was

possible to modify the existing interactions in the
game (e.g. using other devices than the keyboard
and mouse).

The Editing class is distinguished from the
Adaptability class, being narrower in scope and
focusing on game content (task and scenario)
modification. Its criteria are:
 Modifying Tasks: the ability to modify the content

of an existing task, a level, its difficulty level, etc.
 Adding Tasks: the ability to add tasks to the

game’s original ones.
 Planning Tasks: the ability to reorder existing or

self-created tasks (where possible), to allow for
the creation of a new scenario.
 Creating Scenarios: the ability to create a

sequence of tasks.
 Editor Provided: whether an authoring tool is

provided to support creation, modification and
planning tasks.

For the purposes of our research, we introduced
another class of criteria that we consider crucial:
Training Ability. The purpose of this class is to
identify, for instance, whether the system trains the
teacher, or helps him or her to teach programming.
Does the system clearly tell teachers what they can do
with it? If it does, then how? Does the system
provides feedback to the teachers during instructional
design? Does the system provides suitable activities
related to the concepts targeted? In other words, we
need to pinpoint any information or means enabling

teachers to get to grips with the system and to teach
with it. It should be done by them either before
implementing and editing a lesson in the system, or
even during its previous design. In this class, we
identified 4 criteria:
 Guidelines (for playing): describes whether

information is available that may contribute to a
better understanding and a proper handling of the
game.
 Pedagogical Guidelines (for editing): describes

whether information is available that may
contribute to understanding how to teach
effectively with the system.
 Didactic Support: describes whether there are any

means to help teachers to better teach the targeted
concepts (e.g. by providing suitable assignments).
 Pedagogical Support: describes whether there is a

support system that helps teachers implement
efficient courses in the game.
Thanks to the Monitoring class, we provide

several criteria to describe the means made available
to collect, consult and analyse logs of the learners’
actions in the game. Indeed, an adaptation of a game
by teachers or trainers is often triggered by
discrepancies between the expected behaviours (of
the learner-players) during the design stage of the
game and the actual practices that may arise during
the use stage. Such discrepancies are only perceptible,
in some cases, through the implementation of a
monitoring system, which logs interactions between
users and the game. The logs collected can be
transformed in order to reveal indicators, with a high
level of abstraction, that might support teachers in
making the necessary adaptations to ensure the
learning process runs smoothly.

This class is related to Training Ability and
Adaptability (more specifically the criterion Teacher
Profile). Indeed, access to the logs requires a
dedicated teacher interface. The criteria of this class
are:
 Progress: identifies the availability of logs

(indicators) of learners’ progress in the game
(levels completed, unlocked, levels replayed,
etc.).

Review of the Adaptability of a Set of Learning Games Meant for Teaching Computational Thinking or Programming in France

565

 Performance: identifies the availability of logs
(indicators) showing the performance of each
learner (scores, badges earned, etc.).

 Background Information: identifies the
availability of individual learner information
(names, numbers, class, group, etc.).

 Log Formats: describes the formats of the
provided logs (raw or refined). We distinguish
between refined format, i.e. information
collected and presented with the aim of
informing the user about the logs, and raw
format, i.e. partial information that may be
scattered throughout the system.

The Community class has only two criteria. The
first is the availability of User Forums and the second
is the availability of Contact Information for the
authors or the publisher of the game. We added this
class to show whether external help might be
available to teachers or trainers who would like to
undertake editing the game.

The Scenario class is used to establish whether
there is a scenario in the game, and if this scenario
leaves the game tasks independent of each other. The
2 criteria are:
 Extent: indicates the extent of the scenario or

narrative, i.e. the importance of a story or a
background that links the different individual
steps of the game (levels, stages, assignments,
etc.) to each other. This criterion can have 3
values (wide, small, no scenario).

 Stand-Alone Tasks: indicates how dependent
the tasks (the units that constitute the scenario)
are. With an extensive scenario, we will
consider the dependency of the tasks. For
instance, can the tasks be modified separately
without affecting the overall scenario?

There is one remaining criterion that could not be
classified elsewhere: Programming Languages. This
criterion is used to indicate whether the game allows
the use of one or more programming languages. We
have not included it in the Editing class, because it is
about the language used for playing the game and not
for editing it. We therefore propose a CS (Computer
Science) Specific class. This class is the only class
that is specific to games dedicated to learning
computational thinking and programming.

Indeed, all the other classes above-mentioned
contain criteria that are well suitable to review
adaptability for any other kind of serious games.

2.4 Review Process

To review each game, we proceeded as follows: first,
the same game was reviewed by two reviewers

separately, note-taking the relevant information. In a
second step, a synthetic table was filled in jointly. The
time allowed for the review was different for each
game. Thus, we noticed that, depending on the type
of game, the average time for a full review was one
hour. For some games, given their simplicity or
minimalist interface, the review process was
significantly shorter.

The review process required more than just
playing the game, it also required time for the
reviewers to get to grips with it and master it: reading
guides, watching tutorials before playing, and testing
the level editor when available. This analysis was
characterized by a “meta-playing” approach, in which
the reviewers had to be aware of the game and of
themselves as players during the act of playing. This
attitude is necessary for the reviewers to identify pros
and cons of each game and to see, as they proceed,
the similarities and differences between the games.

The review was carried out by class of criteria,
and as soon as all the cells in a class were filled in, the
reviewer moved on to the next class in the table. For
some classes, such as Adaptability and Community,
the reviewer had to spend more time than others, as
additional research, especially on the web. For
instance, the availability of open source code, the
presence of forums dedicated to the game or any
additional information present on users’ blogs.

For each class, a comment column has been added
to the table to provide additional information on the
availability of certain criteria, but also to add specifics
found in the game.

3 RESULTS AND DISCUSSION

Due to lack of space, we only included an excerpt of
the synthetic review table of the 10 selected games in
this paper in the appendix below (Table 3).

Concerning the class Adaptability, we noticed that
many games have an Open Source Code (6/10) which
is a positive element to support their modification.
However, in the current selection, only a few games
(3/10) provide specific interfaces for teachers
(Teacher Profile). Among the games, the available
features are very different: Algoblocs allows teachers
to publish challenges or to enable/disable comments
and forum options; AlgoPython allows teachers to
create classes and assign students to them; finally, the
game Code allows teachers to plan their courses, to
structure them into units and chapters. The last two
criteria of the class Adaptability are scarce. None of
the games studied provide the possibility of
modifying the game interface and only KoduGame

GonCPL 2022 - Special Session on Gamification on Computer Programming Learning

566

allows the use of interaction peripherals other than the
keyboard/mouse pair.

Regarding the class Editing, most games do not
give any control over the scenario, some only allow
the player to unlock the levels as they progress. Two
games stand out: SPY and KoduGame. The first
provides an option to add/remove/modify levels in the
scenario by editing XML files. The latter allows
teachers to create worlds in which they can define
tasks, organize them, and specify assignments.
Nevertheless, we noticed that in Code, tasks (called
units) can be assigned to a course, but their content
cannot be modified or reorganized.

For the class Training Ability, 6 games out of 10
provide guidelines and only 3 (Code, PyRates and
Ceebot) are accompanied by pedagogical guidelines
that provide information on the concepts covered by
the game. The last two criteria in this class are
dependent on the possibility to create/modify a task.
Neither of the two games identified in the Editing
class offers means to assist the teacher on either the
pedagogical or didactic aspects.

Three games stand out in the class Monitoring
(AlgoPython, CodinGame and Algoblocs). The
players’ actions are logged to provide teachers with
dashboards displaying progress and performance
indicators. Unfortunately, none of the games allows
access to the data logged, preventing customized
processing/analysis.

For the class CS Specific, only one game offers the
player the possibility to manipulate several
programming languages: CodinGame. It offers only
text-based languages (no block-based languages), but
several programming paradigms are possible, such as
object-oriented, functional and imperative
approaches. Therefore, teachers are free to choose
their language from a wide range of 27 different
programming languages.

Finally, the class Scenario shows us that most of
the games (7/10) offer some kind of scenarios that
links the different levels of the game. These links can
be independent of the content of the tasks, as in
PyRates, where the levels are structured by a back
story including a theme and characters, but where
each level can also be played independently of the
other levels.

4 CONCLUSIONS

The research presented in this paper is part of the
general problem of the appropriation of serious
learning games dedicated to computational thinking
and programming by teachers and trainers. More

precisely, we seek to define how adaptable and
flexible each game is in order to promote the meta-
design approach and thus the instrumentalization
dimension of the instrumental genesis.

This paper presents preliminary work on
identifying criteria for assessing the adaptability of
serious games. It also presents a review based on
these criteria carried out on a selection of such serious
learning games.

We introduce a review framework with 7 classes
with between 1 and 5 criteria. Each class describes a
component of adaptability for potential users with
diverse profiles, ranging from a primary school
teacher who is new to computing to an experienced
computer scientist. With the exception of one of the
classes and its associated criterion specific to
computational thinking and programming (diversity
of choice in programming languages), we believe that
one of the main contributions of this work is to
provide a structured set of adaptability review criteria
that can be reused for any type of serious learning
game.

We identified 48 games designed for learning
computational thinking and programming. We made
a selection of 10 games on which we used our review
framework.

Thanks to this review of the ten selected games
according to our criteria, we have shown that even if
many of them offer open source code (criterion Open
Source Code), few of them are easily adaptable
(criteria HMI Modification, Interaction Type,
Modifying Tasks, Adding Tasks, Planning Tasks,
Creating Scenarios). When they are possible (e.g.
SPY, PyRates, Kodu Game), the modifications most
often require a good knowledge of programming
(editors are non-existent, except for Kodu Game) and
there are no training resources available to assist in
these modifications.

Beyond the straightforward contributions of this
work (a set of criteria for analysing adaptability that
can be reused in other contexts and its
implementation on reviewing 10 games), these results
allow us to identify that the requirements for having
a game dedicated to learning computational thinking
or programming that allows implementing a meta-
design approach are high and that none of the games
reviewed here fully meet them. Our future research
will therefore be directed towards identifying ways of
making serious games intended for this type of
learning more conducive to the implementation of a
meta-design approach in an effort to foster their
appropriation by teachers and trainers.

Review of the Adaptability of a Set of Learning Games Meant for Teaching Computational Thinking or Programming in France

567

ACKNOWLEDGEMENTS

The authors would like to acknowledge The
University Lumière Lyon 2 for the APPI 2020 Grant.

REFERENCES

Baron, G.-L., & Drot-Delange, B. (2016). L’informatique
comme objet d’enseignement à l’école primaire
française ? Mise en perspective historique. Revue
française de pédagogie. Recherches en éducation, 195,
51–62. https://doi.org/10.4000/rfp.5032

Bogost, I. (2007). Persuasive Games: The Expressive
Power of Videogames. MIT Press.

Bogost, I. (2013). Exploitationware. In R. Colby, M. S. S.
Johnson, & R. S. Colby (Eds.), Rhetoric/
Composition/Play through Video Games: Reshaping
Theory and Practice of Writing (pp. 139–147). Palgrave
Macmillan US. https://doi.org/10.1057/97811373076
75_11

Bouvier, P., Sehaba, K., & Elise, L. (2014). A trace-based
approach to identifying users’ engagement and
qualifying their engaged-behaviours in interactive
systems. Application to a social game. User Modeling
and User-Adapted Interaction (UMUAI’14), 45, 413–
451.

Brunet, O., Yessad, A., Muratet, M., & Carron, T. (2020,
February). Vers un modèle de scénarisation pour
l’enseignement de la pensée informatique à l’école
primaire. Didapro 8 – DidaSTIC. L’informatique,
objets d’enseignements – enjeux épistémologiques,
didactique et de formation, Lille, France. https://hal.
archives-ouvertes.fr/hal-02496191

Dowek, G. (2011). Les quatre concepts de l’informatique.
21.https://edutice.archives-ouvertes.fr/edutice-00676169

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., &
Mehandjiev, N. (2004). Meta-design: A manifesto for
end-user development. Communications of the ACM,
47(9), 33–37.

Fraser, N. (2015). Ten things we’ve learned from Blockly.
2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond), 49–50.

Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games,
motivation, and learning: A research and practice
model. Simulation & Gaming, 33(4), 441–467.

Gee, J. P. (2009). Deep learning properties of good digital
games: How far can they go? Serious Games:
Mechanisms and Effects, 67–82. https://doi.org/10.
4324/9780203891650

Keller, J. M. (1995). Motivation in cyber learning
environments. International Journal of Educational
Telecommunications, 1(1), 7–30.

Kradolfer, S., Dubois, S., Riedo, F., Mondada, F., & Fassa,
F. (2014). A Sociological Contribution to
Understanding the Use of Robots in Schools: The
Thymio Robot. In M. Beetz, B. Johnston, & M.-A.
Williams (Eds.), Social Robotics (pp. 217–228).

Springer International Publishing. https://doi.org/10.10
07/978-3-319-11973-1_22

Lindberg, R. S., Laine, T. H., & Haaranen, L. (2019).
Gamifying programming education in K-12: A review
of programming curricula in seven countries and
programming games. British Journal of Educational
Technology, 50(4), 1979–1995.

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2014).
Educational games for teaching computer
programming. In Research on e-Learning and ICT in
Education (pp. 87–98). Springer.

Malone, T., & Lepper, M. (2005). Making learning fun: A
taxonomy of intrinsic motivations for learning. Making
Learning Fun: A Taxonomy of Intrinsic Motivations for
Learning, 3.

Marne, B., Muratet, M., & Sehaba, K. (2021). Toward a
Meta-design Method for Learning Games. In B. Csapó
& J. Uhomoibhi (Eds.), Proceedings of the 13th
International Conference on Computer Supported
Education—Volume 2: CSEDU (Vol. 2, pp. 370–376).
https://doi.org/10.5220/0010530203700376

Marne, B., Sehaba, K., & Muratet, M. (2021). Vers une
méthode de méta-design de jeux sérieux: Application
pour l’apprentissage de la programmation à travers
Blockly Maze. 342. https://hal.archives-ouvertes.fr/hal-
03290040

Miljanovic, M., & Bradbury, J. (2018, November 1). A
Review of Serious Games for Programming.

Papert, S. (1987). Microworlds: Transforming education.
Artificial Intelligence and Education, 1, 79–94.

Prensky, M. (2004). Digital Game-Based Learning (Vol. 1–
1). McGraw-Hill.

Rabardel, P. (1995). Les hommes et les technologies: Une
approche cognitive des instruments contemporains.
Armand Colin. http://ergoserv.psy.univ-paris8.fr/Site/
Groupes/Modele/Articles/Public/ART3721055037654
26783.PDF

Rabardel, P. (2003). From artefact to instrument.
Interacting with Computers, 15(5), 641–645. https://
doi.org/10.1016/S0953-5438(03)00056-0

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y.
(2009). Scratch: Programming for All. Commu-
nications of the ACM, 52(11), 60–67. https://doi.org/
10.1145/1592761.1592779

Ryan, M., Costello, B., & Stapleton, A. (2012). Deep
Learning Games through the Lens of the Toy.
Meaningful Play 2012, 1–29. http://meaningfulplay.
msu.edu/proceedings2012/mp2012_submission_6.pdf

Vahldick, A., Mendes, A. J., & Marcelino, M. J. (2014). A
review of games designed to improve introductory
computer programming competencies. 2014 IEEE
Frontiers in Education Conference (FIE) Proceedings,
1–7. https://doi.org/10.1109/FIE.2014.7044114

Wing, J. M. (2006). Computational thinking. Communi-
cations of the ACM, 49(3), 33–35. https://doi.org/
10.1145/1118178.1118215

GonCPL 2022 - Special Session on Gamification on Computer Programming Learning

568

APPENDIX

The Table 3 below shows an excerpt of the full
synthetic review table. The comments and some game
metadata (URL and date of visit) are omitted. The full
version of the table is available online:
https://recherche.univ-lyon2.fr/meta-dect/SG_adapta
bility_Review.xlsx

On the table, to save space we replaced
“Available” with “×” and “Not available” or “No
scenario” with blank cells.

Table 3: Excerpt of the full synthetic review table.

Game Sp
y

C
od

e

A
lg

op
yh

to
n

P
yr

at
es

C
od

in
’

G
am

e

K
od

u
 G

am
e

R
ob

oc
od

e

C
ee

bo
t

A
lg

ob
lo

ck
s

C
om

p
u

te
 it

A
d

ap
ta

b
il

it
y Open Source Code × × × × × ×

Teacher Profile × × ×

HMI Modification
Interaction Types ×

E
d

it
in

g

Modifying Tasks × ×

Adding Tasks × × ×

Planning Tasks × ×
Creating Scenarios × ×
Editor Provided ×

T
ra

in
in

g
A

b
il

it
y

Guidelines (for playing) × × × × × × ×
Pedagogical Guideline (for
editing)

 × × × ×

Didactic Support

Pedagogical Support

M
on

it
or

in
g Progress × × × × × × ×

Performance × × ×
Background Information × × ×
Log Formats Refined Refined Refined Refined

C
S

Sp
ec

if
ic

Programming Language ×

C
om

m
u

n
it

y

User Forum × × × × ×

Author/Publisher Contact × × × × × × × × ×

Sc
en

ar
io

Extent Small Small Wide Small Wide Wide Small

Stand-Alone Tasks × × × ×

Review of the Adaptability of a Set of Learning Games Meant for Teaching Computational Thinking or Programming in France

569

