REFERENCES
Bartolomei, L., Pinto Teixeira, L., and Chli, M. (2021).
Semantic-aware active perception for UAVs using
deep reinforcement learning. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS).
Bartolomei, L., Teixeira, L., and Chli, M. (2020).
Perception-aware path planning for UAVs using se-
mantic segmentation. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 5808–5815.
Bultmann, S., Quenzel, J., and Behnke, S. (2021). Real-
time multi-modal semantic fusion on unmanned aerial
vehicles. In European Conference on Mobile Robots
(ECMR).
Campana, M., Lamiraux, F., and Laumond, J.-P. (2016). A
gradient-based path optimization method for motion
planning. Advanced Robotics, 30(17-18):1126–1144.
Carvalho, M., Ferrera, M., Boulch, A., Moras, J., Le Saux,
B., and Trouv
´
e-Peloux, P. (2019). Technical Report:
Co-learning of geometry and semantics for online 3D
mapping. arXiv:1911.01082.
Crespo, J., Castillo, J. C., Mozos, O. M., and Barber, R.
(2020). Semantic information for robot navigation: A
survey. Applied Sciences, 10(2):497.
Darmanin, R. and Bugeja, M. (2016). Autonomous ex-
ploration and mapping using a mobile robot running
ROS. In International Conference on Informatics in
Control, Automation and Robotics (ICINCO), pages
208–215.
Deeken, H., Puetz, S., Wiemann, T., Lingemann, K., and
Hertzberg, J. (2014). Integrating semantic informa-
tion in navigational planning. In 41st International
Symposium on Robotics, pages 1–8.
Ebendt, R. and Drechsler, R. (2009). Weighted A
∗
search–
unifying view and application. Artificial Intelligence,
173(14):1310–1342.
Gonz
´
alez-Banos, H. H. and Latombe, J.-C. (2002). Naviga-
tion strategies for exploring indoor environments. The
International Journal of Robotics Research, 21(10-
11):829–848.
Grinvald, M., Furrer, F., Novkovic, T., Chung, J. J., Ca-
dena, C., Siegwart, R., and Nieto, J. (2019). Volumet-
ric Instance-Aware Semantic Mapping and 3D Object
Discovery. IEEE Robotics and Automation Letters,
4(3):3037–3044.
Grinvald, M., Tombari, F., Siegwart, R., and Nieto, J.
(2021). TSDF++: A multi-object formulation for
dynamic object tracking and reconstruction. In In-
ternational Conference on Robotics and Automation
(ICRA).
Guiotte, F., Lef
`
evre, S., and Corpetti, T. (2019). Attribute
filtering of urban point clouds using max-tree on voxel
data. In International Symposium on Mathematical
Morphology and Its Applications to Signal and Image
Processing, pages 391–402.
He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2020).
Mask R-CNN. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 42(2):386–397.
Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C.,
and Burgard, W. (2013). OctoMap: An efficient prob-
abilistic 3D mapping framework based on octrees. Au-
tonomous Robots, 34(3):189–206.
Jadidi, M. G., Gan, L., Parkison, S. A., Li, J., and Eustice,
R. M. (2017). Gaussian processes semantic map rep-
resentation. arXiv preprint arXiv:1707.01532.
Jaillet, L., Cort
´
es, J., and Sim
´
eon, T. (2010). Sampling-
based path planning on configuration-space costmaps.
IEEE Transactions on Robotics, 26(4):635–646.
Jeffrey Delmerico, Elias Mueggler, J. N. and Scaramuzza,
D. (2017). Active autonomous aerial exploration for
ground robot path planning. In IEEE Robotics and
Automation Letters, volume 2, pages 664–671.
Landrieu, L. and Simonovsky, M. (2018). Large-scale point
cloud semantic segmentation with superpoint graphs.
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4558–4567.
Lu, D. V., Hershberger, D., and Smart, W. D. (2014).
Layered costmaps for context-sensitive navigation.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 709–715.
Mascaro, R., Teixeira, L., and Chli, M. (2021). Dif-
fuser: Multi-view 2D-to-3D label diffusion for seman-
tic scene segmentation. In IEEE International Confer-
ence on Robotics and Automation (ICRA).
McCormac, J., Clark, R., Bloesch, M., Davison, A., and
Leutenegger, S. (2018). Fusion++: Volumetric object-
level SLAM. In International Conference on 3D Vi-
sion (3DV), pages 32–41.
Millane, A., Taylor, Z., Oleynikova, H., Nieto, J., Sieg-
wart, R., and Cadena, C. (2018). C-blox: A scalable
and consistent TSDF-based dense mapping approach.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems, Madrid, Spain, pages 995–1002.
Mozart, A., Moraes, G., Guidolini, R., Cardoso, V. B.,
Oliveira-Santos, T., de Souza, A. F., and Badue, C. S.
(2021). Path planning in unstructured urban environ-
ments for self-driving cars. In International Con-
ference on Informatics in Control, Automation and
Robotics (ICINCO).
Nguyen, T., Shivakumar, S. S., Miller, I. D., Keller, J., Lee,
E. S., Zhou, A.,
¨
Ozaslan, T., Loianno, G., Harwood,
J. H., Wozencraft, J., Taylor, C. J., and Kumar, V.
(2019). Mavnet: An effective semantic segmentation
micro-network for MAV-based tasks. IEEE Robotics
and Automation Letters, 4(4):3908–3915.
Okada, Y. and Miura, J. (2015). Exploration and observa-
tion planning for 3D indoor mapping. In IEEE/SICE
International Symposium on System Integration (SII),
pages 599–604.
Ono, M., Fuchs, T. J., Steffy, A., Maimone, M., and Yen,
J. (2015). Risk-aware planetary rover operation: Au-
tonomous terrain classification and path planning. In
IEEE Aerospace Conference, Big Sky, MT, USA, pages
1–10.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet:
Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE Conference
ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics
294