CORAS. (2010). A Guided Tour of the CORAS Method.
http://www.springer.com/cda/content/docu-
ment/cda_downloaddocument/ 9783642123221-c3.pdf
Gritzalis, D., Iseppi, G., Mylonas, A., & Stavrou, V. (2018).
Exiting the risk assessment maze: A meta-survey. ACM
Computing Surveys, 51, 1, 1-30.
Hompes, B., Verbeek, H., & van der Aalst, W. (2015). Find-
ing Suitable Activity Clusters for Decomposed Process
Discovery. In P. Ceravolo, et al. (Eds.), Data-Driven
Process Discovery and Analysis (Vol. 237, pp. 32–57).
Springer International Publishing.
Jouili, S., & Vansteenberghe, V. (2013). An Empirical
Comparison of Graph Databases. 2013 International
Conference on Social Computing, 708–715.
Kalenkova, A., van der Aalst, W., Lomazova, I., & Rubin,
V. (2017). Process mining using BPMN: Relating event
logs and process models. Software & Systems Model-
ing, 16(4), 1019–1048.
Kotzanikolaou, P., Theoharidou, M., & Gritzalis, D.
(2013a). Assessing n-order dependencies between crit-
ical infrastructures. International Journal of Critical In-
frastructures, 9(1/2), 93.
Kotzanikolaou, P., Theoharidou, M., Gritzalis, D. (2013b).
Cascading effects of common-cause failures on Critical
Infrastructures. Proc. of the 7
th
IFIP International Con-
ference on Critical Infrastructure Protection, 171-182,
Springer (AICT 417).
Lamine, E., Thabet, R., Sienou, A., Bork, D., Fontanili, F.,
& Pingaud, H. (2020). BPRIM: An integrated frame-
work for business process management and risk man-
agement. Computers in Industry, 117, 103199.
List, B., & Korherr, B. (2006). An evaluation of conceptual
business process modelling languages. Proc. of the
ACM Symposium on Applied Computing, 1532.
Lopez, J., Alcaraz, C., & Roman, R. (2013). Smart control
of operational threats in control substations. Computers
& Security, 38, 14–27.
Marin-Castro, H. M., & Tello-Leal, E. (2021). Event Log
Preprocessing for Process Mining: A Review. Applied
Sciences, 11(22), 10556.
Min, H.-S., Beyeler, W., Brown, T., Son, Y., & Jones, A.
(2007). Toward modeling and simulation of critical na-
tional infrastructure interdependencies. IIE Transac-
tions, 39(1), 57–71.
Neo4j Graph Database. (2000). Neo4j Graph Database
Platform. https://neo4j.com/product/neo4j-graph-data-
base/
NIST SP 800-30. (2012). Guide for conducting risk assess-
ments (NIST SP 800-30r1). National Institute of Stand-
ards and Technology.
Peixoto, D., A. Batista, V., Atayde, A., Borges, E., Resen-
de, R., Isaías, C., & Pádua, P. (2008). A Comparison of
BPMN and UML 2.0 Activity Diagrams.
ProM. (2022). https://www.promtools.org/doku.php
Rubio, J., Alcaraz, C., Roman, R., & Lopez, J. (2017). A-
nalysis of Intrusion Detection Systems in Industrial E-
cosystems. Proc. of the 14
th
International Joint Confe-
rence on E-Business and Telecoms, 116–128.
Shao, B., Wang, H., & Xiao, Y. (2012). Managing and min-
ing large graphs: Systems and implementations. Pro-
ceedings of the 2012 International Conference on Man-
agement of Data - SIGMOD ’12, 589.
Song, M., Günther, C., & van der Aalst, W. (2009). Trace
Clustering in Process Mining. In D. Ardagna, et al.
(Eds.), Business Process Management Workshops (pp.
109–120). Springer Berlin Heidelberg.
Stergiopoulos, G., Dedousis, P., & Gritzalis, D. (2020).
Atomatic network restructuring and risk mitigation
through business process asset dependency analysis.
Computers & Security, 96, 101869.
Stergiopoulos, G., Kotzanikolaou, P., Theocharidou, M.,
Lykou, G., & Gritzalis, D. (2016). Time-based critical
infrastructure dependency analysis for large-scale and
cross-sectoral failures. International Journal of Critical
Infrastructure Protection, 12, 46–60.
Stergiopoulos, G., Kouktzoglou, V., Theocharidou, M., &
Gritzalis, D. (2017). A process-based dependency risk
analysis methodology for critical infrastructures. Inter-
national Journal of Critical Infrastructures, 13(2/3),
184.
van der Aalst, W., Adriansyah, A., de Medeiros, A., & Ar-
cieri, F. (2012). Process Mining Manifesto. In Business
Process Management Workshops Vol. 99, pp. 169–194.
Springer Berlin Heidelberg.
van der Aalst, W. (2014). Process Mining Discovery, Con-
formance and Enhancement of Business Processes. Sp-
ringer.
van der Aalst, W., & de Medeiros, A. (2005). Process Min-
ing and Security: Detecting Anomalous Process Execu-
tions and Checking Process Conformance. Electronic
Notes in Theoretical Computer Science, 121, 3–21.
van der Aalst, W., & Dustdar, S. (2012). Process Mining
Put into Context. IEEE Internet Computing, 16(1), 82–
86.
van Dongen, B., de Medeiros, A., Verbeek, H., Weijters,
A., & van der Aalst, W. (2005). The ProM Framework:
A New Era in Process Mining Tool Support, Applicati-
ons and Theory of Petri Nets 2005 (pp. 444–454). Sp-
ringer.
Viner, D., Stierle, M., & Matzner, M. (2021). A Process
Mining Software Comparison. ArXiv:2007.14038 [Cs].
http://arxiv.org/abs/2007.14038