Fruchterman, T. M. and Reingold, E. M. (1991). Graph
drawing by force-directed placement. Software: Prac-
tice and experience, 21(11):1129–1164.
Gansner, E. R., Koren, Y., and North, S. (2004). Graph
drawing by stress majorization. In International Sym-
posium on Graph Drawing, pages 239–250. Springer.
Hartjen, L., Philipp, R., Schuldt, D. F., Friedrich, P. D. B.,
and Howar, P. D. F. (2019a). Classification of driving
maneuvers in urban traffic for parametrization of test
scenarios. In 9. Tagung Automatisiertes Fahren.
Hartjen, L., Philipp, R., Schuldt, F., and Friedrich, B.
(2020). Saturation effects in recorded maneuver data
for the test of automated driving. Highway Res. Rec.
Hartjen, L., Schuldt, F., and Friedrich, B. (2019b). Seman-
tic classification of pedestrian traffic scenarios for the
validation of automated driving. In 2019 IEEE In-
telligent Transportation Systems Conference (ITSC),
pages 3696–3701. IEEE.
ISO21448 (2019). ISO/PAS 21448: 2019 Road Vehicles
Safety of the Intended Functionality. Norm, Interna-
tional Organization for Standardization.
Kalra, N. and Paddock, S. M. (2016). Driving to safety:
How many miles of driving would it take to demon-
strate autonomous vehicle reliability? Transportation
Research Part A: Policy and Practice, 94:182–193.
Kamada, T., Kawai, S., et al. (1989). An algorithm for draw-
ing general undirected graphs. Information processing
letters, 31(1):7–15.
King, C., Braun, T., Braess, C., Langner, J., and Sax, E.
(2021). Capturing the variety of urban logical sce-
narios from bird-view trajectories. In VEHITS, pages
471–480.
Klimenta, M. (2012). Extending the usability of multidi-
mensional scaling for graph drawing. PhD thesis,
Citeseer.
Kobourov, S. G. (2012). Spring embedders and force di-
rected graph drawing algorithms.
Koopman, P. and Wagner, M. (2018). Toward a framework
for highly automated vehicle safety validation. SAE
International Journal of Engines, 11(2018-01-1071).
Langner, J., Grolig, H., Otten, S., Holz
¨
apfel, M., and Sax,
E. (2019). Logical scenario derivation by clustering
dynamic-length-segments extracted from real-world-
driving-data. In VEHITS, pages 458–467.
Lizenberg, V., Alkurdi, M. R., Eberle, U., and K
¨
oster, F.
(2021). Intelligent co-simulation framework for co-
operative driving functions. In 2021 IEEE 17th In-
ternational Conference on Intelligent Computer Com-
munication and Processing (ICCP), pages 109–115.
IEEE.
Needleman, S. B. and Wunsch, C. D. (1970a). A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48(3):443–453.
Needleman, S. B. and Wunsch, C. D. (1970b). A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal
of molecular biology, 48(3):443–453.
Neurohr, C., Westhofen, L., Butz, M., Bollmann, M. H.,
Eberle, U., and Galbas, R. (2021). Criticality Anal-
ysis for the Verification and Validation of Automated
Vehicles. IEEE Access, 9:18016–18041.
Neurohr, C., Westhofen, L., Henning, T., de Graaff, T.,
M
¨
ohlmann, E., and B
¨
ode, E. (2020). Fundamental
considerations around scenario-based testing for au-
tomated driving. In 2020 IEEE Intelligent Vehicles
Symposium (IV), pages 121–127. IEEE.
Pavlopoulos, G. A., Paez-Espino, D., Kyrpides, N. C., and
Iliopoulos, I. (2017). Empirical comparison of visu-
alization tools for larger-scale network analysis. Ad-
vances in bioinformatics, 2017.
PEGASUS (2019). Pegasus method - an overview.
https://www.pegasusprojekt.de/files/tmpl/Pegasus-
Abschlussveranstaltung/PEGASUS-Gesamtmethode.
pdf. Accessed: 2022-03-01.
PEGASUS (2020). PEGASUS - Schlussbericht.
https://www.pegasusprojekt.de/de/pegasus-
abschlussveranstaltung. Accessed: 2022-03-01.
Perianes-Rodriguez, A., Waltman, L., and Van Eck, N. J.
(2016). Constructing bibliometric networks: A com-
parison between full and fractional counting. Journal
of Informetrics, 10(4):1178–1195.
Pfeffer, R. (2020). Szenariobasierte simulationsgest
¨
utzte
funktionale Absicherung hochautomatisierter
Fahrfunktionen durch Nutzung von Realdaten.
PhD thesis, Karlsruher Institut f
¨
ur Technologie (KIT).
Ponn, T., Gnandt, C., and Diermeyer, F. (2019). An
optimization-based method to identify relevant sce-
narios for type approval of automated vehicles. In Pro-
ceedings of the ESV—International Technical Confer-
ence on the Enhanced Safety of Vehicles, Eindhoven,
The Netherlands, pages 10–13.
Ries, L., Rigoll, P., Braun, T., Schulik, T., Daube, J., and
Sax, E. (2021). Trajectory-based clustering of real-
world urban driving sequences with multiple traffic
objects. In 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC), pages 1251–
1258. IEEE.
Ries, L., Stumpf, M., Bach, J., and Sax, E. (2020). Se-
mantic comparison of driving sequences by adapta-
tion of word embeddings. In 2020 IEEE 23rd Interna-
tional Conference on Intelligent Transportation Sys-
tems (ITSC), pages 1–7.
Scholtes, M., Westhofen, L., Turner, L. R., Lotto, K.,
Schuldes, M., Weber, H., Wagener, N., Neurohr, C.,
Bollmann, M. H., K
¨
ortke, F., et al. (2021). 6-layer
model for a structured description and categoriza-
tion of urban traffic and environment. IEEE Access,
9:59131–59147.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang,
J. T., Ramage, D., Amin, N., Schwikowski, B., and
Ideker, T. (2003). Cytoscape: a software environment
for integrated models of biomolecular interaction net-
works. Genome research, 13(11):2498–2504.
Theocharidis, A., Van Dongen, S., Enright, A. J., and Free-
man, T. C. (2009). Network visualization and analysis
of gene expression data using biolayout express 3d.
Nature protocols, 4(10):1535–1550.
Thimm, O., Bl
¨
asing, O., Gibon, Y., Nagel, A., Meyer, S.,
Kr
¨
uger, P., Selbig, J., M
¨
uller, L. A., Rhee, S. Y., and
Maneuver-based Visualization of Similarities between Recorded Traffic Scenarios
243