
Performance Analysis of an Embedded System for Target Detection 
in Smart Crosswalks using Machine Learning 

J. M. Lozano Domínguez1 a, J. M. Corralejo Mora1, I. J. Fernández de Viana González2 b,  
T. J. Mateo Sanguino1 c and M. J. Redondo González1 d 

1Department of Electronic Engineering, Computer Systems and Automatics, University of Huelva,  
Av. de las Artes s/n, 21007 Huelva, Spain 

2Department of Information Technologies, University of Huelva, Av. de las Artes s/n, 21007 Huelva, Spain 

Keywords: Embedded System, Machine Learning, Performance Analysis, Road Signalling, Target Detection. 

Abstract: Embedded systems with low computing resources for artificial intelligence are being a key piece for the 
deployment of the Internet of Things in different areas as energy efficiency, agriculture or water monitoring, 
amid others. This paper carries out a study of the computational performance of a smart road detection and 
signalling system. To this end, the implementation methodology from Matlab® to C++ of a one-class SVM 
classifier with two pattern analysis strategies based on RADAR signals and RAW data is described. As a 
result, we found a balance between AUC, RAM consumption, processing time and power consumption for a 
Teensy 4.1 microcontroller with STFT and the fitcsvm2 algorithm versus other hardware options such as an 
I7-3770K processor, Raspberry Pi Zero and Teensy 3.6. 

1 INTRODUCTION 

In recent years, there has been a boom of the Internet 
of Things (IoT) devices, which are embedded systems 
that incorporate specific software to work in different 
fields of application (Zanella, 2014). These areas 
include energy efficiency (Alowaidi, 2022), 
agriculture (Rahman, 2022) or water treatment 
monitoring (Sugamar, 2021) among others. 

The increasing improvement of IoT devices has 
made it possible to include machine learning (ML) 
algorithms in control units with scarce computational 
resources, such as microcontrollers (Gopinath, 2019).  
As an example, a comparison of machine learning 
techniques was carried out to minimize water loss 
during irrigation operations (Amassmir, 2022). In this 
work, Raspberry Pi 3 is used as a control unit in which 
an artificial neural network (ANN) was the technique 
that offered the best performance. Another work 
includes the use of support vector machines (SVM) to 
detect cardiac anomalies in patients through 
characteristics extracted from a fast Fourier transform 

 
a  https://orcid.org/0000-0002-2542-0517 
b  https://orcid.org/0000-0002-9689-8884 
c  https://orcid.org/0000-0002-9387-3892 
d  https://orcid.org/0000-0001-5550-1310 

(FFT). In this case, a 32-bit microcontroller system 
was used to implement the machine learning 
technique, achieving an accuracy of up to 95.68% 
(Raj, 2020). There are also cases in the field of road 
safety where a solution for accident detection and 
classification alerts emergency systems based on the 
severity of the accident (Balfaqih, 2022). For this, the 
techniques named Gaussian Mixture Model (GMM) 
and Classification and Regression Trees (CART) 
were integrated into an Arduino Mega. Other work 
proposed the use of ML techniques to detect 
anomalies in traffic data to dynamically regulate road 
signs. This solution was implemented on Raspberry 
Pi 3 (Sankaranarayanan, 2019).  

This paper describes an improvement of a road 
detection and signalling system aimed at 
distinguishing road targets through sensory fusion 
and fuzzy logic (Lozano Domínguez, 2018). 
Specifically, when a pedestrian is detected on a 
crosswalk, the system generates visual cues that alert 
drivers to stop their vehicle safely. With this purpose, 
another approach for target detection using RADAR 

382
Lozano Domínguez, J., Corralejo Mora, J., Fernández de Viana González, I., Mateo Sanguino, T. and Redondo González, M.
Performance Analysis of an Embedded System for Target Detection in Smart Crosswalks using Machine Learning.
DOI: 10.5220/0011142700003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 382-389
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

 

sensors and signal analysis applying Short Time 
Fourier Transform (STFT) on a PC was investigated 
(Domínguez, 2020). Furthermore, a vehicle detection 
system based on ML techniques was tested for a smart 
pedestrian crosswalk (Lozano Domínguez, 2021). 
The current work aims to combine the previous works 
on STFT analysis and vehicle detection to apply them 
to an embedded system focused on discerning 
pedestrians by detecting signal patterns through ML 
techniques. The goal here is to validate a generic 
methodology —without a domain-specific language 
as in (Gopinath, 2019)— to implement ML 
algorithms in a constrained microcontroller while 
performing more costly pre-processing tasks (i.e., 
STFT) than the classification task itself. To do this, 
the paper presents the implementation of several ML 
techniques in an embedded system with a greater 
limitation of RAM memory, CPU speed and power 
consumption than other state-of-the-art solutions 
based on Raspberry Pi or FPGA.  

This manuscript has been structured as follows: 
Section 2 describes the hardware and software of the 
embedded system implemented to classify 
pedestrians. Section 3 presents the ML algorithm 
used, the implementation into a microcontroller and 
the experimentation carried out. Finally, Section 4 
highlights the conclusions and future work. 

2 SYSTEM DESCRIPTION 

This section describes the main hardware 
components, the AI techniques applied to detect 
different targets and, finally, the methodology 
followed to extract a ML model and translate it into 
C++ code to be interpreted by a microcontroller unit.  

2.1 Hardware Components 

The road signalling system is made up of a set of 
intelligent nodes ubicated in the limits of a crosswalk, 
each one covering an area (Fig. 1). The nodes 
integrate sensors facing the inner and outer faces of 
the crosswalk to detect nearby objects. A traffic-
oriented illumination is activated when pedestrians 
are detected in the zebra crossing. Then, the detector 
node handles the communication with the rest of the 
network to synchronize the flashing lights and thus 
improve road safety. 

Each node integrates a microcontroller, wireless 
communication, sensors, signalling and power unit. 
We selected a Teensy 4.1 device to analyse data 
sensor periodically collected, identify the target type 
and activate the signalling unit when necessary. The 

latter is composed by four high brightness white 
LEDs oriented to oncoming drivers (Lumileds L128-
5070HA) and one amber LED oriented to pedestrians 
(Lumileds L128-PCA12500000). The sequence and 
brightness of the LEDs is controlled with a blinking 
pattern through pulse width modulation (PWM). The 
communication unit is implemented with a Microchip 
ATSAMR21B18 device compliant with the IEEE 
802.15.4 standard in an effort to save energy. The 
detection unit combines Doppler RADARs and a 
magnetic sensor. To this end, we selected two 
RFbeam Microwave GmbH K-LD7 devices in the 
24GHz band, one oriented to detect bicycles and cars, 
and the other oriented to detect pedestrians. 
Moreover, a STMicroelectronics LIS3MDL magnetic 
sensor is used to complementarily detect the presence 
of vehicles. Finally, the power unit supplies energy to 
the system through a Texas Instruments 
BQ25895RTWR charger connected to a set of solar 
panels and Lithium Polymer (LiPo) batteries. 

 
Figure 1: Overall diagram of the smart crosswalk. 

2.2 Software Description 

To detect and distinguish between vehicles and 
pedestrians on a crosswalk, the developed software 
follows the data flow described in Figure 2.  

 
Figure 2: Software system structure. 

The RADARs provide an I/Q signal containing 
the speed and pattern information of the targets in 
relation to their Doppler frequency. The control unit 
processes this signal through the STFT, which allows 
performing a spectral analysis of the signal. The 

Performance Analysis of an Embedded System for Target Detection in Smart Crosswalks using Machine Learning

383



 

 

signal pattern is used to feed the characteristics of the 
ML algorithm and identify different targets such a 
walking person or a vehicle (Domínguez, 2020). To 
this end, the system merges data generated in the 
different sensors in a sensory fusion process. On the 
one hand, the one-class support vector machine 
(SVM) has been implemented to process data from 
the RADARs, separately. On the other hand, a fuzzy 
logic process has been developed to analyse the 
magnetic sensor data. This estimates the presence of 
vehicles depending on detected perturbations and can 
be auto calibrated to detect even stopped vehicles. In 
this way, when the one-class SVM determines the 
presence of a pedestrian on the crosswalk and the 
diffuse vehicle detector does not detect the presence 
of vehicles, the system takes a decision through a 
hierarchical classifier based on traditional logic. In 
this way, the entire system activates the signalling 
units in the presence of pedestrians in the vicinity of 
the crosswalk. In this section, the details related to the 
AI techniques used in the system will be exposed. 

2.2.1 Implementation of Fuzzy Logic to 
Detect Vehicles 

The block called “Fuzzy vehicle detector” is used to 
determine the presence or absence of vehicles around 
a crosswalk by changes in the magnetic field. These 
perturbations are produced due to the presence of 
ferromagnetic elements in vehicles, whose values are 
measured on the X, Y, and Z axes. The vehicle 
detector block is a Mamdani-type fuzzy rule-based 
controller with classification norms such as “If X1 is 
A1 and … Xn is Xn, then Y is B” (Mamdani, 1977). 
Both, the predictor and output variables have been 
established by an expert system. To this end, we used 
trapezoidal functions to establish the membership of 
a fuzzy set since the adequacy to the data model is 
correct and computationally simple. In addition, the 
conjunction and implication operators used the 
minimum T-norm (Aliev, 2013). The defuzzification 
process uses the FITA method (i.e., First Inter, Then 
Aggregate) in contrast to the less consistent FATI 
method (Ibrahim, 2004). The process also used the 
MVP weighting method (Buckley, 1994). 

The vehicle detector has three inputs (i.e., one per 
axis) with three tags named Changeα, NoChangeα 
and ChangeNα, where α means the corresponding 
axis. NoChangeα stands for the value of the magnetic 
field during the idle state of the sensor, while 
Changeα and ChangeNα mean a magnetic field 
variation below and above the idle state, respectively. 
The output of the magnetic controller ranges between 
0-1 to indicate absence or presence of vehicles close 

to a crosswalk (i.e., No and Yes). The rules base and 
tags of the magnetic controller were experimentally 
stablished by the expert system as shown in Table 1. 
Accordingly, it was established that a variation of the 
idle state of the magnetic sensor in at least 2/3 of its 
axes indicates the presence of vehicles circulating on 
the crosswalk. In another case, this means that the 
vehicles do not exist. 

In addition to the fuzzy rule base, a logic that takes 
the last five results of the magnetic controller is 
considered. If one of these five values exceeds the 
threshold of belonging to the vehicle set called “Yes” 
above 0.5, the presence of a vehicle is determined. 
Said logic also considers that, if after a minute in 
which the values of the vehicle presence are detected 
continuously, the diffuse labels of the magnetic 
sensor are recalibrated because this may be caused by 
a vehicle parked near the crosswalk. This approach 
has been implemented directly in C++ through 
classes and interfaces. 

Table 1: Rule base for the magnetic fuzzy controller. 

Label x-axis Label y-axis Label z-axis Vehicle 
NoChangeX NoChangeY NoChangeZ No 
NoChangeX NoChange ChangeNZ No 
NoChangeX NoChangeY NoChangeZ No 
NoChangeX ChangeNY NoChangeZ No 
NoChangeX ChangeNY ChangeNZ Yes 
NoChangeX ChangeNY NoChangeZ Yes 
NoChangeX ChangeY NoChangeZ No 
NoChangeX ChangeY ChangeNZ Yes 
NoChangeX ChangeY NoChangeZ Yes 
ChangeNX NoChangeY NoChangeZ No 
ChangeNX NoChange ChangeNZ Yes 
ChangeNX NoChangeY NoChangeZ Yes 
ChangeNX ChangeNY NoChangeZ Yes 
ChangeNX ChangeNY ChangeNZ Yes 
ChangeNX ChangeNY NoChangeZ Yes 
ChangeNX ChangeY NoChangeZ Yes 
ChangeNX ChangeY ChangeNZ Yes 
ChangeNX ChangeY NoChangeZ Yes 
ChangeX NoChangeY NoChangeZ No 
ChangeX NoChange ChangeNZ Yes 
ChangeX NoChangeY NoChangeZ Yes 
ChangeX ChangeNY NoChangeZ Yes 
ChangeX ChangeNY ChangeNZ Yes 
ChangeX ChangeNY NoChangeZ Yes 
ChangeX ChangeY NoChangeZ Yes 
ChangeX ChangeY ChangeNZ Yes 
ChangeX ChangeY NoChangeZ Yes 

ICSOFT 2022 - 17th International Conference on Software Technologies

384



 

 

2.2.2 Implementation of One-class to Detect 
Pedestrians 

One-class SVM is an unsupervised ML technique that 
has been implemented in Matlab® with the “fitcsvm” 
library. This technique allows detecting outliers or 
anomalies in the analyzed data, as well as training 
with only one target class that, in our case, it would 
be pedestrians. In this way, pedestrians are the targets 
of the main class while vehicles and the idle state are 
considered outliers. This approach has been preferred 
because the only targets that should generate a light 
alert are pedestrians, whilst any target that does not 
have the characteristics of a pedestrian will not cause 
an activation. The main advantage of this ML 
technique over others is that only the “pedestrian” 
class needs to be known to be trained. Furthermore, it 
offers good handling of unbalanced classes and is 
very sensitive to outliers. On the contrary, it requires 
a good selection of hyperparameters and kernels by 
the expert system (Singla, 2020).  

2.3 Conversion from Matlab to C++ 

This section describes the steps followed to export the 
ML model generated after training the algorithm from 
Matlab® to C++ code. The process is summarized in 
Figure 3. The C++ language has been selected 
because it is the one used in the integrated 
development environment (IDE) to generate the 
binary code of the control unit used (i.e., Teensy 4.1). 
The procedure followed has been: i) generate a 
Matlab® script with the necessary functions for the 
execution of the program; ii) configure the Matlab 
Coder tool to generate the code optimally; and iii) 
perform an optimization of both the variables and the 
code autogenerated by Matlab®.  

 
Figure 3: Code conversion procedure. 

Firstly, the script to be created in Matlab® must 
contain the same number of inputs as those used by 
the ML model, as well as specify the processing of 
these inputs, if any. On the one hand, it is necessary 
to specify that the model must be loaded through the 
“loadLearnerForCoder” function, which allows 
generating the automatic learning models in C/C++ 
code. On the other hand, the “predict” function must 
be used to obtain the classifier’s prediction based on 
the inputs (i.e., features obtained from the normalized 
STFT). Finally, the output generated by the model 
must also be added (i.e., pedestrian presence). The 
script used can be seen in Algorithm 1.  

Algorithm 1: Function to generate the ML model. 

function output= classifyRadarSVM(inputs)  
    Mdl = loadLearnerForCoder('Model Name'); 
    output= predict(Mdl,X); 
end

 
Second, the Matlab Coder tool is required to 

generate the C/C++ code from the previously 
described script. This tool allows selecting whether 
the source code to be generated will be C or C++, 
define the name of the interfaces and select the 
hardware on which the code is going to be executed 
to optimize it. In the present case, none has been 
selected in "Hardware Board" and then it has been 
indicated that the microcontroller belongs to the 
ARM Cortex-M family (Figure 4). Furthermore, it 
has been indicated in the tool configuration that the 
OpenMP library cannot be used, since our 
microcontroller only has one processing thread.  

 
Figure 4: Matlab Coder configuration. 

Finally, an optimization of the libraries generated 
by this tool was performed to adapt them to the 
hardware used and reduce the space occupied in 
memory. For this, the code has been analyzed in 
search of possible duplications of temporary variables 
in memory. Furthermore, it has been sought that those 
variables initialized in their declaration remain 

Performance Analysis of an Embedded System for Target Detection in Smart Crosswalks using Machine Learning

385



 

 

resident in memory to avoid copy operations during 
periodic execution. The variables most frequently 
accessed have been allocated in the fastest memory 
areas. The optimized code is included in the project as 
part of a functional module, which is called periodically 
to classify the RADAR signal. 

3 EXPERIMENTATION 

The K-LD7 sensor provides two types of signals. On 
the one hand, PDAT provides an array of RAW data 
with the speed, angle, distance and magnitude of the 
targets detected. On the other hand, the RADAR 
provides the I/Q signal to be later processed to obtain 
identifying characteristics of the targets. 
Accordingly, this section will detail the steps 
followed to process the I/Q signal as the main method 
to obtain additional features to those provided by the 
PDAT signal. 

3.1 Data Pre-processing 

The process begins by acquiring the A1 signal from 
the K-LD7 sensor, which refers to the signal reflected 
by frequency A of the RADAR received at antenna 1. 
Signal A1 is a composite I/Q signal (i.e., “in phase” 
and “in quadrature”), thus standing for the real and 
imaginary values conforming the signal. These 
signals are obtained in sets of 256 values taken with a 
sampling frequency of 1100 Hz. To do this, the 
RADAR query period was set to 240ms so that it was 
the minimum time needed to store and communicate 
a 256-value sample (see actual CPU usage in Tables 
5 and 6). Once the signals are obtained, they are 
normalized separately using the Min-Max method 
since it is a suitable method to be the training base for 
ML algorithms (Al Shalabi, 2006). This process is 
depicted in Figure 5. 

 
Figure 5: I/Q signal acquisition process. 

To obtain the data to train and test the classifiers, 
an outdoor setup where the RADAR captured several 
scenes involving vehicles and pedestrians was 
established. These included vehicles approaching, 

moving away, stopping and starting, as well as 
individuals, groups of people, pedestrians with pets, 
cyclists and scooter users. Figure 6 details the steps 
followed to process each of the scenes. Each one is 
made up of 25 consecutive RADAR acquisitions, 
giving us a total of 6400 samples per scene. 
Subsequently, the real and imaginary parts of the 
signal were processed by means of the STFT. 
Specifically, we applied a sample rate of 1100 Hz, a 
Kaiser-type window, an overlap length of 200 values 
and an FFT size of 512 points. Then, it was divided 
into chunks made up of the same number of points. 
Each one of these pieces are the minimum units to be 
classified. That is, the labels of the classification 
process will be assigned to these pieces and not to 
each one of the samples that form them. 

Preliminary tests were carried out to obtain the 
minimum cut-off size that optimizes the classification 
results in relation to the space used to store the signal. 
Amid different sizes (i.e., from 256 to 8192 values), 
it was found that the best results were achieved with 
512 values, whilst sizes greater than 2048 were 
discarded due to hardware restrictions. In addition, 
and in order not to lose the temporal evolution of the 
signal, it was decided to chop the signal with an offset 
of 128 values. Therefore, each of the scenes is divided 
into 50 pieces. 

 
Figure 6: Overview of a scene processing. 

The next step was to characterize each of the 
pieces obtained. For each one, 20 features were 
obtained based on simple statistical calculations such 
as the mean value, variance, difference between the 
maximum and minimum value, median or the 
kurtosis value. Finally, the feature values were 
normalized by the Euclidean norm (i.e., 2-norm). 
Table 2 shows the whole list of features.  

Once the scenes were characterized, the next step 
was their labelling by a group of experts. As said 
before, each piece is labelled independently. The 
strategy followed by the experts was to assign the 
target label ‒represented by 1‒ when the crosswalk 

ICSOFT 2022 - 17th International Conference on Software Technologies

386



 

 

must light up the LEDs and the outlier label ‒
represented by 0‒ in other cases. For the experiments 
performed in this paper, a total of 81 scenes were 
defined resulting in a total of 4050 labelled chunks. 

Table 2: Features applied to extract the STFT pattern. 

Features #1-10 Features #11-20 
mean(sliceVec); median(sliceVec) 

mean(sliceVec.^2) mean(std(slice,0,1) 
mean(sliceVec.^3) std(mean(slice,1)) 
mean(sliceVec.^4) std(std(slice)) 

std(sliceVec); std(std(slice,0,1)) 
skewness(sliceVec); mean(std(slice,0,2) 
kurtosis(sliceVec); std(mean(slice,2)) 

quantile(sliceVec,0.25) std(std(slice)) 
quantile(sliceVec,0.50) std(std(slice,0,2)) 
quantile(sliceVec,0.75) max(sliceVec)-min(sliceVec) 

3.2 Parameter Settings and Learning 
Outcomes 

Two different datasets were used to study the 
behaviour of the one-class SVM classifier. The first 
one was formed by the data obtained from the PDAT 
signal and the second one by the data obtained after 
processing the I/Q signals (see Section 3.1). The one-
class SVM classifier used in this paper applies the 
radial basis kernel, find a scale value for the kernel 
function and standardize the predictors. These values 
were not tuned because, apart from being far from the 
goals of this paper, very promising results were 
obtained. In addition to the one-class SVM classifier, 
we tested other one-class classifiers provided by the 
ddtools library as well as bi-class classifiers such as 
TreeBagger or Random Forest (RF). As mentioned 
before, the default parameters were used in all cases.  

The cross-validation method was used to evaluate 
the classifier process. Table 3 summarises the results 
obtained with I/Q signals for which the AUC reached 
quite high scores. Note that this table does not contain 
the results obtained with the PDAT signal as they 
were quite poor. The classifier was not able to 
distinguish whether the object passing in front of the 
RADAR was vehicle or pedestrian. Therefore, the 
classifier suffered from over-fitting which caused 
continuous false positives. 

We found that the two one-class SVM versions 
can achieve higher AUC than the two-class classifiers 
without using outliers in the training process. The 
difference between fitcsvm1 and fitcsvm2 is that the 
latter assumes that 5% of the observations are 
outliers. Moreover, the values they achieved are much 
better than the rest of the one-class classifiers. It 
should be highlighted that these results are penalised 

too much as we have not considered the delays in the 
prediction. That is, the experts labelled each of the 
6,400 samples per scene indicating the exact moment 
at which the LEDs should light up. Instead, the 
classifier works on chunks of 512 samples labelled as 
a whole. Besides, the criteria followed by the experts 
were not the same due to human interpretation. 
Therefore, the exact moment in which the LEDs had 
to be turned on could be different depending on the 
expert who labelled the samples. As a result, the AUC 
values tend to 1 as the presence of a pedestrian 
becomes more evident after successive time intervals 
(i.e., 512-value samples shifted 256 values).  

Table 3: One-class classifier results. 

Algorithm ACC Recall Specif. AUC 
fitcsvm1 0.951 0.961 0.886 0.924 
fitcsvm2 0.912 0.914 0.96 0.937 
kcenter 0.117 0.655 0.105 0.38 
kmeans 0.117 0.656 0.105 0.38 

TreeBagger 0.965 0.978 0.86 0.919 
RF 0.948 0.956 0.850 0.903 

3.3 Results and Discussion 

Teensy 4.1 was the microcontroller selected to 
comply with the system requirements (i.e., acceptable 
consumption, enough memory RAM to run code and 
high processing speed to provide real-time 
responses). In addition to the algorithms explained, 
Teensy 4.1 executes a main code to handle data 
collection, wireless synchronization, and lighting 
control. All modules are subject to significant time 
restrictions. On the one hand, the main control code 
and the Fuzzy algorithm takes +100KB of RAM. On 
the other hand, the one-class SVM algorithm is the 
most memory demanding with +400KB of RAM. The 
whole code is allocated in the RAM1 bank, which is 
accessed as tightly coupled memory for maximum 
performance. The RAM2 bank ‒or PSRAM‒ could 
be used to extend the main memory requirements. 
Accordingly, the memory regions of Teensy 4.1 for 
STFT are shown in Table 4. In contrast, the one-class 
SVM classifier developed for the PDAT signal has 
greater memory footprint. After a code optimization 
process, the memory footprint was reduced by 40%. 

Moreover, the system must respond in a short 
time. Hence, the processing of incoming data from 
the RADAR through STFT and the one-class SVM 
classifier is crucial for the system latency. In our 
solution, the choice of Teensy 4.1 has been the key to 
speed up this process compared to other 
microcontroller options. Table 5 shows the 

Performance Analysis of an Embedded System for Target Detection in Smart Crosswalks using Machine Learning

387



 

 

processing time for the RADAR I/Q signals with 
different hardware approaches. 

Table 4: Usage of memory regions in Teensy 4.1. 

Memory Usage for STFT Usage for PDAT 

RAM1 500/512 KB 504/512 KB 
RAM2 Free/512 KB 185/512 KB 

Flash 263/8192 KB 561/8192 KB 
PSRAM Free/16384 KB Free/16384 KB 

Both the STFT and the one-class SVM classifier 
use double precision (64 bit), so that the 32-bit 
floating point math unit of the Teensy 3.6 does not 
achieve an adequate performance. In contrast, the 
64/32-bit floating point math unit of Teensy 4.1 can 
process these algorithms much faster. Furthermore, 
Teensy 3.6 cannot allocate all variables in RAM, so it 
must use slower memories. Nevertheless, Teensy 4.1 
can easily work with its tightly coupled memory (i.e., 
ITCM and DTCM). For this reason, we support 
choosing the Teensy 4.1 device for our system over 
other hardware options. 

As an alternative approach to improve the system 
latency, we applied the RAW data from PDAT to feed 
the one-class SVM classifier. Table 5 shows the 
processing time for this approach where it can be 
compared how the processing times of the PDAT 
signal are lower than for the STFT. 

Table 5: Comparison of total processing times for the 
implemented approaches. 

Proc. unit STFT Proc. PDAT Proc. 

I7-3770K @3.9MHz 6.2 ms 2 ms 
Raspberry Pi Zero 

2W@1GHz 48 ms 4.6 ms 

Teensy 4.1 @600Mhz 31 ms 4 ms 

Teensy 4.1 @396Mhz 47 ms 6 ms 
Teensy 4.1 @150Mhz 124 ms 16 ms 

Teensy 3.6 @180Mhz 580 ms 100 ms 

We selected the one-class SVM algorithm to treat 
the signal signature from the STFT vs the PDAT 
strategy since the AUC and memory usage weighed 
more in the decision. We further tested different 
versions of the one-class SVM algorithm to validate 
the system (see Table 6). Although an OS-based 
computer implementation could presumably be 
faster, it was shown to have no significant 
improvement in processing time over code executed 
directly on microcontrollers. 

Table 6: Processing times for different implementation of 
the one-class SVM for STFT. 

Proc. unit Proc. 
time (1) 

Proc. 
time (2) 

Proc. 
time (3)

I7-3770K 
@3.9MHz 4.6 ms 5.8 ms 6.2 ms 

Raspberry Pi Zero 
2W@1GHz 34.7 ms 45 ms 48 ms 

Teensy 4.1 
@600Mhz 13 ms 15 ms 31 ms 

Teensy 4.1 
@396Mhz 20 ms 23 ms 47 ms 

Teensy 4.1 
@150Mhz 51 ms 59 ms 124 ms 

Teensy 3.6 
@180Mhz 233 ms 270 ms 580 ms 

(1) STFT with preliminary data collected; (2) STFT with 
new data collected and manual labelling process; (3) STFT 
with data collected in other orientations and manual 
labelling process 

Finally, the strategy to be chosen had to satisfy an 
energy consumption limit for the autonomous road 
signalling system. To do this, the consumption was 
analysed in a fully operational node, powering all its 
elements. The RADAR was set to detect targets 
moving up to 50 km/h and Teensy 4.1 was tested with 
different working frequencies. Table 7 shows the 
power consumption of the described device. To put 
the consumption in context, Raspberry Pi Zero 
reaches 1.4W running the one-class SVM algorithm 
for the STFT, while the I7-3770K processor can 
typically reach 80W only in idle. 

Table 7: Consumption for one-class SVM with STFT. 

Running frequency Current at 3.85V 
Teensy 4.1 @600Mhz 220mA 

Teensy 4.1 @396Mhz 170mA 
Teensy 4.1 @150Mhz 140mA 

4 CONCLUSIONS 

Smart sensors commonly require embedded systems 
with low computational resources to efficiently run 
artificial intelligence in areas such as e.g., energy 
efficiency, agriculture or water monitoring. With this 
purpose, this paper studies the performance of a set of 
smart autonomous nodes in the field of road safety. 
The goal of this system is to discern pedestrians from 
vehicles on a crosswalk by using machine learning 
techniques to detect behaviour patterns. To this end, 

ICSOFT 2022 - 17th International Conference on Software Technologies

388



 

 

this paper described the methodology followed to 
deploy a computational model for a microcontroller 
from Matlab® to C++. The experimentation was 
carried out considering a one-class SVM classifier 
with two pattern analysis strategies based on I/Q 
signals and RAW data from a RADAR sensor. The 
tests over 81 scenes and 4050 chunks of data labelled 
achieved an AUC of 0.937 with an acceptable RAM 
consumption of 500 KB, processing time of 31-124 
milliseconds, and power consumption of 534-847 
mW for a Teensy 4.1 microcontroller. To this end, the 
experimentation compared the results considering an 
I7-3770K processor, Raspberry Pi Zero and a Teensy 
3.6 microcontroller.  

Regarding future works, the efforts are aimed at 
improving the AUC of the PDAT strategy compared 
to the STFT (i.e., fix the overfitting with more scenes) 
due to the advantage of the lower processing time 
obtained with RAW data. We also consider applying 
automatic learning techniques to optimize/reduce the 
number of features of the targets utilized currently to 
classify. In addition, we plan the use of open-source 
tools (e.g., EmbML) as an alternative to Matlab® to 
develop different machine learning classifiers for 
resource-constrained hardware. 

ACKNOWLEDGEMENTS 

This paper was financed by the project “Improving 
Road Safety Through Photoluminescent Signaling 
and Fog Computing” (ref. P20_00113) awarded by 
the General Secretariat of Universities, Research and 
Technology of the Andalusian Plan for Research, 
Development and Innovation (PAIDI 2020). 

REFERENCES 

Aliev, R.A. (2013). Fuzzy sets and fuzzy logic. In 
Fundamentals of the Fuzzy Logic-Based Generalized 
Theory of Decisions. Springer, Berlin, Heidelberg, pp. 
1-64. 

Alowaidi, M. (2022). Fuzzy efficient energy algorithm in 
smart home environment using Internet of Things for 
renewable energy resources. Energy Reports, 8, 2462-
2471.  

Al Shalabi, L., Shaanban, Z., & Kasasbeh, B. (2006). Data 
Mining: A preprocessing engine. Journal of Computer 
Science, 2(9), 735-739. 

Amassmir, S., Tkatek, S., Abdoun, O., & Abouchabaka, J. 
(2022). An intelligent irrigation system based on 
Internet of thigns to minimize water loss. Indonesian 
Journal of Electrical Engineering and Computer 
Science, 25(1), 504-510.  

Balfaqih, M., Alharbi, S. A., Alzain, M., Alqurashi, F., & 
Almilad, S. (2022). An Accident Detection and 
Classification System Using Internet of Things and 
Machine Learning towards Smart City. Sustainability, 
14(1), 210.  

Buckley, J.J., & Hayashi, Y. (1994). Can approximate 
reasoning be consistent?. Fuzzy sets and systems, 65(1), 
13-18. 

Domínguez, J.M., Sanguino, T.J., Véliz, D.M., & de Viana 
González, I.J. (2020). Multi-Objective Decision 
Support System for Intelligent Road Signaling. In 15th 
Iberian Conference on Information Systems and 
Technologies, pp. 1-6. 

Gopinath, S., Ghanathe, N., Seshadri, V., & Sharma, R. 
(2019). Compiling KB-sized machine learning models 
to tiny IoT devices. In 40th ACM SIGPLAN Conference 
on Programming Language Design and 
Implementation, pp. 79-95.  

Ibrahim, A.M. (2004). Embedded fuzzy applications. Fuzzy 
Logic for Embedded System Applications, 69-98.  

Lozano Domínguez, J.M., Al-Tam, F., Mateo Sanguino, 
T.J., & Correia, N. (2021). Vehicle Detection System 
for Smart Crosswalks Using Sensors and Machine 
Learning. 18th International Multi-Conference 
Systems, Signals & Devices, pp. 984-991.  

Lozano Domínguez, J.M., & Mateo Sanguino, T.J. (2018). 
Desing, Modelling and Implementation of a Fuzzy 
Controller for an Intelligent Road Signaling System. 
Complexity, article ID 1849527. 

Mamdani, E.H. (1977). Applications of fuzzy set theory to 
control systems: a survey. In Fuzzy automata and 
decision processes. Amsterdam: North-Holland, pp. 
77-88. 

Rahman, H., Faruq, M.O., Hai, T.B.A., Rahman, W., 
Hossain, M.M., Hasan, M., Islam, S., Moinuddin, M., 
Islam, M.T., & Azad, M.M. (2022). IoT enabled 
mushroom farm automation with Machine Learning to 
classify toxic mushrooms in Bangladesh.  Journal of 
Agriculture and Food Research, 100267. 

Raj, S. (2020). An efficient IoT-based platform for remote 
real-time cardiac activity monitoring. IEEE 
Transactions on Consumer Electronics, 66(2), 106-
114. 

Sankaranarayanan, S., & Mookherji, S. (2021). SVM-based 
traffic data classification for secured IoT-based road 
signaling system. International Journal of Intelligent 
Information Technologies, 15(1), 22-50.  

Singla, M., & Shukla, K. K. (2020). Robust statistics-based 
support vector machine and its variants: a survey. 
Natural Computing and Applications, 32(15), 11173-
11194. 

Sugamar S.J., Sahana, R., Phadke, S., Prasad, S., & 
Srilakshmi, G.R. (2021). Real Time Water Treatment 
Plant Monitoring System using IoT and Machine 
Learning Approach. In International Conference on 
Design Innovations for 3Cs Compute Communicative 
Control (ICDI3C), pp. 286-289. 

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, 
M. (2014). Internet of things for smart cities. IEEE 
Internet of Things journal, 1(1), 22-32. 

Performance Analysis of an Embedded System for Target Detection in Smart Crosswalks using Machine Learning

389


